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Abstract

Novel ion traps that provide either a static or a dynamic magnetic gradient field allow for the use of radio-
frequency radiation for coupling internal and motional states of ions, which is essential for conditional
quantum logic. We show that the Hamiltonian describing this coupling in the presence of a resonant
dynamic gradient, is identical, in a dressed state basis, to the Hamiltonian in the case of a static gradient.
The coupling strength is in both cases described by the same effective Lamb-Dicke parameter. This insight
can be used to overcome demanding experimental requirements when using a dynamic gradient field for
state-of-the-art experiments with trapped ions, for example, in quantum information science. At the same
time, this insight opens new experimental perspectives by way of using a single resonant or detuned
dynamic gradient field, inducing long-range coupling, for conditional multi-qubit dynamics.

1. Introduction

Experiments with atomic trapped ions have played a leading role in the development of experimental quantum
information science [1-3]. Well isolated from their environment, trapped ions are ideally suited for investigating
fundamental questions of quantum physics, and are a promising candidate for quantum simulations and
scalable universal quantum computing reaching beyond the capabilities of classical computers [4]. Internal
electronic states serving as qubits are coherently prepared using electromagnetic radiation in the optical or
radio-frequency (RF) regime, and an upper limit for the coherence time of ionic qubits is set by the coherence
time of this radiation. For conditional quantum dynamics with two or more qubits, represented by several ions
confined in the same trap or trapping region, the collective vibrational motion is coupled to the internal
dynamics of individual ions, thus serving as a quantum bus.

Using laser light for coupling ionic qubits via this quantum bus has been standard for some decades, since
only with light in and around the visible regime the Lamb-Dicke parameter 1), measuring the coupling strength
between internal and motional states [5], takes on a sufficiently large value in typical traps. Driving solely a single
desired ion out of a collection of trapped ions, typically spaced apart by a few micrometers, also required optical
radiation that can be focused down to a spot size smaller than the inter-ion separation. In numerous
experiments laser light has been successfully used to deterministically prepare quantum states of trapped ions,
even complete quantum algorithms [6, 7] and quantum simulations [8, 9] have been implemented.

The complexity of experimental set-ups can be reduced decisively, when RF radiation is used to directly drive the
ions’ dynamics instead of taking the detour of imprinting RF signals onto optical beams and then steering these optical
beams towards trapped ions. With laser beams, frequency-, phase-, and amplitude noise, diffraction and beam pointing
instabilities in the optical domain pose additional problems that can be avoided by the direct use of RF radiation.

Using RF radiation for coupling internal and motional dynamics becomes possible when an additional,
spatially varying field is applied to an atom trap. This can be a static [10] or a dynamic [11] magnetic gradient
field. In both cases, an effective Lamb-Dicke parameter arises through magnetic gradient induced coupling
(MAGIC) even upon excitation with RF radiation [12—17]. In addition, individual addressing of atoms using RF
radiation has been shown to be effective [12, 14, 16, 18-21].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aa7b22
mailto:woelk@physik.uni-siegen.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7b22&domain=pdf&date_stamp=2017-08-21
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa7b22&domain=pdf&date_stamp=2017-08-21
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 19 (2017) 083021 SWélk and C Wunderlich

When employing MAGIC for trapped ions as a complementary approach to successful research based on
laser-driven ion trap quantum logic, spontaneous emission because of the finite lifetime of qubit states, or
spontaneous scattering caused by non-resonant laser light driving Raman transitions is not a concern for the
coherence time of qubits. As is the case for some laser-based gates [22], conditional quantum dynamics based on
magnetic gradient induced spin—spin coupling is tolerant against thermal excitation of the ions’ vibrational
motion.

Single-qubit quantum gates driven by RF radiation have been implemented with an error well below 10~*
[23,24], an important threshold for fault-tolerant quantum computing. Using a static field gradient, a quantum
byte (eight ions) could be addressed with a measured cross-talk between closely spaced, interacting ions in the
10°° range [20]. MAGIC was also employed to demonstrate two-qubit gates [13, 14, 17, 25], three-qubit gates
[26], and opens new possibilities for quantum simulations and quantum computation [26, 27].

In this paper we show that the addition of either a static or a dynamic gradient field to a Coulomb crystal of
trapped ions—in order to take advantage of MAGIC—can be described by similar Hamiltonians. It is shown
that the Hamiltonian in a dressed-state picture, obtained when applying a spatially varying resonant dynamic
field, is identical to the case of having a static gradient field and a spatially constant qubit driving field.

In current experiments where a dynamic gradient field is applied, great care is taken to null the dynamic
magnetic field at the ions’ positions and thus to retain only a gradient of the dynamic field at this position
[13,28,29] in order to obtain high-fidelity two-qubit gates. Another approach is to use an extra dressing field to
reduce errors resulting from a non-zero offset field [25]. Here, we show how atomic states dressed by the
dynamic magnetic gradient field itself could be employed for conditional quantum gates, thus decisively
simplifying experimental efforts necessary when implementing the dynamic MAGIC scheme.

Before introducing the novel scheme and discussing it in more detail, we briefly summarize its features: (i) It
dispenses with the demanding need to null the dynamic field at the ions’ locations. This could be particularly
important when implementing conditional quantum dynamics with more than two ions. (ii) Atomic states
dressed by the dynamic gradient field are insensitive to ambient field noise making it superfluous to apply a
relatively strong and stable bias field in order to create qubits with long coherence time (so-called clock states).
(iii) Applying a dynamic gradient field with the gradient pointing along the axis of weakest confinement of ions
in alinear trap becomes feasible, and, thus can decidedly enhance the coupling strength between qubit states and
motional states. (iv) It becomes straightforward to individually address ions exposed to such a dynamic field
gradient with low cross-talk. (v) Itis shown that long-range spin—spin coupling between dressed qubits arises
when applying a single dynamic gradient field. Conditional dynamics arising from this coupling could be used
for quantum simulations and efficient quantum computation.

In what follows, we consider coupling between internal and motional states in the presence of a static
(section 2) or a dynamic (section 3) magnetic gradient field. We recapitulate both methods and bring them into a
common representation starting by first considering a single atom before demonstrating their similarity for
multi-qubit systems.

2. Static magnetic gradient

In this section we first outline how the application of a static magnetic field gradient to a single trapped atom
gives rise to coupling between the atom’s internal and motional states. The summary below is based on results
published in [10] and illustrated, for instance, in [30]. Then, a collection of ions exposed to a magnetic gradient
field is considered, and the expression describing the coupling between internal states of different ions (spin—
spin coupling) induced by the gradient field is given. The derivation of this expression for spin—spin coupling can
be foundin [31] (see also [12, 32] for physical interpretations). We include this material here to make the present
article reasonably self-contained and to establish the notation.

For a static magnetic gradient parallel to the z-axis, the Hamiltonian describing a single atom j with energy
level spacing 7w, confined in a harmonic trap at position z;expanded up to first order in the field gradient is
given by

1 4 4 .
Hyic = Eﬁuoa(z” + %(Bo + 2B + fwy,a, ap, (1)

with the ion’s matrix element of the magnetic dipole moment /1, the magnetic field B(z) = By + zB’, and the
Pauli-z matrix o,. Here, a; and a,, describe the creation and annihilation operators of the vibrational mode in
the harmonic trap with angular frequency 1;,. The position zofion jis givenby z = z; + Az; withiits
equilibrium position z;and the displacement Az;. The displacement can be written in terms of the normal
vibrational mode n as
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Azj = bj,q,(a, + a)) 2

with the help of the coefficients —1 < b;,, < 1thatreflect how strongly ion j participates in motional mode 7 (if
only a single ion is considered, then b, ; = 1). Here, g, = /7 /(2mu;,) describes the atom’s spatial extent in the
ground state of the harmonic trapping potential. As a consequence, Hamiltonian equation (1) can be rewritten
as

Hitaie = %ﬁw(zﬂa?’ + Anagay + nga(a) + anod) 3)
with the position dependent level splitting w(z;) = wy + 1,(By + z; B / /2 and the coupling strength2
(/J’ZB/b',n n)
Ej,n = e 7 9 . (4)
(27w,,)

In this way, an interaction between the internal and external degrees of freedom is created whenever a qubit with
position dependent level splitting is used. No additional lasers or RF radiation are needed to create this
interaction. Note that B’ indicates the magnitude of the static magnetic field gradient.

Now, we consider the application of an additional driving field with angular frequency wp, close to the
atomic resonance w(z;). The interaction between this driving field and the trapped atom is described by

Hp = ﬁTQDagcj)eXp[i(kz — wpt)] + h.c. (5)

with k being the projection of the wave vector k of the driving field onto the z-direction. An expansion of z
around its equilibrium position reveals an interaction between internal and external degrees of freedom whose
strength is governed by the Lamb-Dicke parameter = b; ,q, k [5]. However, when the applied radiation has a
long wavelength ), for instance in the RF regime, then the wavenumber k = 27/ is too small (in typical ion
traps) to yield a sizable 7, and, thus the coupling between internal and motional states, that would make
excitation of motional sidebands effective, is negligible. A small value of k can be interpreted as the linear
momentum /k transferred to the atom upon absorption or emission of a photon being too small to change the
trapped atom’s motional state. However, in the presence of a gradient field (equations (1), (3) and (4)) motional
sideband excitation by a driving field (equation (5)) becomes effective as outlined below.

The transformation H = eS"He S [10] of Hyic (equation (1)) leads to decoupling of internal and external
degrees of freedom and we obtain

Hstatic = TJU(ZJ) + ﬁynd;an- (6)

The operator S; , for a single ion jand mode  is given by
Sjn = jm(ay — ao, )

signifying an internal-state dependent shift of the normal modes induced by the magnetic gradient.
The same transformation applied to the driving field Hamiltonian (equation (5)), Hp = eSinHpe S
yields [10]

= AV

(oL@ =) | g e=5u(@ =) (glont 4 e=iwnt) (8)

which reveals the role of ¢ , as a generalized Lamb-Dicke parameter. Expanding Hp, in ¢;,, shows that motional
sidebands of the internal resonance can be resonantly driven, for instance, if wp = w; & 1.

In the summary above we already established the notation for Nions (1 < j, n < N)even though, so far,a
single harmonically trapped atom (j = 1, n = 1) was considered. Now, we turn to the case of Nions confined
in alinear trap: the generalization of equation (3) to N ions and its transformation by e5H,q. e~ with
S = zj,nsj,n leadsto [31]

~ 1 . i 7 .
Hitatic = E Z fiw(z,—)a(zf) + Z ﬁynan d, — E Z ]j,kagj)agk)- 9)
j n i<k

This reveals a direct interaction of the internal degrees of freedom: a long-range interaction between the ions’
internal states (henceforth referred to as spins) induced by the static magnetic gradient described by

¥/ .
H=—-=>"JixwPc®, (10)
j<k

2 Equation (4) is valid in the regime of a linear Zeeman effect. In more general cases the coupling strength is given by €;,, = |0,wj|b;,nq,, /4
where w; can be determined e.g. by the Breit-Rabi formula.
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with the coupling strength given by [31, 32, 43]

]j,k = Z VUn€j,u€k,n- (11)
n

Again, we note that this interaction is induced solely by the magnetic gradient without any additional radiation.
Furthermore, this spin—spin coupling is independent of the motional degrees of freedom and enables therefore
so called hot quantum gates, as long as the total potential confining the ions (the external trapping potential plus
the Coulomb interaction between the ions) remains a harmonic potential.

3. Dynamic magnetic gradient

The scheme described by Ospelkaus et al [11] allows for spin—spin coupling via a dynamic magnetic field

B(z, t) = cos(wgpt)B(z), with a gradient of the amplitude perpendicular to the string of ions. When
recapitulating this scheme in what follows, we take the gradient of this dynamic magnetic field to point alongthe
z-axis. Thus, the string of ions is taken to be parallel to the x-axis and parallel to the electrode providing the
oscillating magnetic fields and the ion and the magnetic field are coupled via the matrix element i, of the
magnetic dipole moment’. In analogy to the static case, we express the position z via the equilibrium position z;
plus a small displacement Az and expand the magnetic field B(z) = B;j + AzB’ around z;. In this way, we arrive
at the Hamiltonian of a single ion j coupled to the radial mode n

Jon o .
H i = 70021) + fwna)a, + a&J)cos(wBt)uxBj

+ o cos(wp t)uxB’[b»,nqn(a,f + ayl. (12)

As a consequence, the interaction Hamiltonian in the rotating wave approximation (RWA) is given by
Hosiip = 704 (Qie7 % + Q; a,e 101 4 hec. (13)

with the detuning 6 = wp — wy, the Rabi frequencies
Qj = Bju, /(27%), (14)

and
Qjn = B'u,bjuq,/27%). (15)

Similar to the static case, the coupling between internal and motional degrees of freedom is caused by the
magnetic gradient (equations (12) and (13)).

By applying two dynamic magnetic fields with equal amplitude and opposite detuning close to the red- and
blue sideband, a spin—spin interaction can be generated [11]. In general, a spin—spin interaction without
additional excitations via the carrier transition is desirable. Excitation via the carrier is suppressed due to off-
resonant excitation (detuning of the driving fields by about 7;,), and it can be neglected if €; < 1, This leads,
together with equation (14), to the restriction p, B; < 7, for the magnetic field. Typical magnitudes are
v, = 27 x 10°Hzand /g = 10710 T Hz ', which leads to B < 10~* T. As a consequence, a high magnetic
gradient and a small absolute magnetic field strength are needed for high-fidelity two-qubit gates. Therefore,
considerable experimental effort is devoted to an exact geometry of the electrodes generating the magnetic fields
and to exact positioning of the ions [13, 28, 29].

4. Dynamic MAGIC in a dressed-state basis

In what follows, we show that the approach using a resonant dynamic magnetic gradient for coupling internal
and external degrees of freedom is equivalent to the static gradient approach when expressing the Hamiltonian
for the dynamic case in a dressed-states basis. Furthermore, it is outlined how a non-resonant dynamic gradient
allows for interesting variations of spin-motion coupling.

For this purpose, we transform the Hamiltonian H, given in equation (12) into the rotating frame of the
ionwith 6 = wp — wy, resulting in

/J, T .
H = “x(0ve © 4+ o el x [B; + B'bjq,(a) + an)] + fwna,a, (16)

for a single ion and a single mode.

3 . .
For details on the matrix elements y, and f1, see[11].
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Bare states Dressed states

Q=1 AE = uB(z)

z z

Figure 1. Left: the interaction strength €2 between a spatially varying driving field B(z, ) = B(z)cos(wpt) and a two-level atom.
Right: in the dressed-state picture this position dependent interaction leads to a position dependent level splitting AE of states | ).

The eigenstates of the operator o, exp(—idt) + o_ exp(idt) are given by

|+) = %(ei‘”/zlg) + e—i&t/2|e>) (17)

with the bare atomic states |¢) and |e). The states |1-) are equivalent to the often used time-independent dressed
states for § = 0.For § = 0 the states |+ ) deviate from the dressed states and become time dependent (for a
detailed comparison with the usual dressed states for 6 = 0 see section 4.1). As a consequence, the Pauli-z matrix
in the basis |4) is given by

¥, = T(oe ¥ + o e TT (18)
with the unitary transformation
—ist/2

NG}

€

T = (|+> + |>)<gl+ej;2(l+> -~ |>)<el- (19)

This relation shows that the strength of the interaction between the bare states (proportional to o, + o)
transforms into the level splitting of the states | +) (proportional to X,) as displayed in figure 1.

The Hamiltonian /4,a,] a, describing the energy of the vibrational modes is invariant under all these
transformations. As a consequence, the resulting Hamiltonian H,.) = TH T 4+ i(d, T (t)) T () leads to

1. Bj

B'b;
Hps) = e L 2]’"‘1"

716
Y, + /wa)a, + (a] + a2, + TEX. (20)
The first three terms exhibit exactly the same form as the Hamiltonian of the static gradient field given in
equation (3). The last term results from the fact that for § = 0 the transformation matrix Tbecomes time
dependent, leading to an additional term. A comparison of the Hamiltonians H, equation (20), and Hgic,

equation (3), leads to the identifications

1B
w(z;)) = 21
(z)) ~ (21
and
lj’xB/bj,ﬂqn
Eig = ————. 22
s 2, (22)

A comparison with equation (4) reveals that the coupling between motional and internal degrees of freedom in
static and dynamic MAGIC are not only of the same form but are described by exactly the same effective Lamb-
Dicke parameter using the appropriate matrix element of the atomic magnetic moment. Using equations (14)
and (15), we can write w(zj) = 2£);and

Ejin = Qjn/Vn (23)

revealing the connection between the coupling constant €; , and the sideband Rabi frequency. Note that the
effective Lamb-Dicke parameter ¢; , is determined by the position dependence of the level splitting w(z;), but
not by the detuning 6. The detuning defines the relevant reference frame when applying single-qubit rotations.
When choosing a dynamic gradient field (that induces this spin-motion coupling) with zero detuning, then
single-qubit rotations resulting from the additional term (/6 ,/2) ¥, are avoided. If § = 0, this additional single-
qubit rotation will affect the overall evolution. Depending on how exactly a two-qubit gate is carried out, this
might lead to a reduced effective coupling due to fast oscillations (for more details see appendix A).

5
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4.1. Spin-motion coupling using time-independent dressed states
Below we discuss another approach helpful to better understand the effect of detuning of the dynamic gradient
field. For this purpose we consider time-independent dressed states.

The interaction of a classical driving field with frequency wg with a two-level atom with energy splitting /v
in the rotating frame of the driving field is given in the RWA by

Q
H= —?az + ﬁT(oar + o). 24)

with 6 = wp — wp and the Rabi frequency (2. The eigenstates of this Hamiltonian, given by
| = dress = cos 0]g) — sin Ble), |+ )dress = sin O]g) + cos Hle) (25)

with tan(20) = /6, are called dressed states. We transform equation (12) first into the rotating frame of the
driving field and consecutively into the dressed-state picture resulting in

Hgress = 6% + 25, + /wya)a,
B'b; , - -
+ %(di + a,)[sin(20)%, + cos(20),] (26)

with ij denoting the Pauli-matrices in the dressed state picture. The factor between square brackets in the third

term on the right-hand side of equation (26) is of the form 7 - 3 with |##]* = 1and can thus be interpreted asa
generator of a spin-rotation around the axis 77 = (cos(26), 0, sin(26))". The motional degree of freedom is now
coupledto ii - ¥. Asa consequence, a detuning causes a change in the direction i of the coupling, but does not
change the coupling strength itself given by the effective Lamb-Dicke parameter ; ;.

The differences between the states |+ ) defined in equation (17) and | & )4,ess defined in equation (25) are: (i)
| 1) are defined in the reference frame of the ion and |4 )4yess in the reference frame of the driving field. (i) | +) are
time dependent for § = 0 whereas |+ )4, are time independent for § = 0. (iii) A detuning 6 = 0leadsin the
basis |+ ) to an additional driving term (§/2) o , whereas in the dressed-state picture it leads to a change of the
rotation axis #. In both cases, the strength of the coupling determined by the effective Lamb-Dicke parameter
€j,»is independent of the detuning 6.

4.2. Long-range spin—spin coupling using a dynamic gradient field

In the static case we obtain spin—spin coupling between all pairs of ions, equations (10) and (11), when
generalizing the expression for a single ion, equation (3), to the case of Nions. In the case of a dynamic gradient
we are lead to the same Hamiltonian as in the static case: equation (20), with the magnitude of the static gradient
replaced by the magnitude of the dynamic gradient. Then the generalization to a string of Nions aligned along
the z-axis again reveals a spin—spin interaction, as described by equations (10) and (11), induced by the dynamic
gradient. The strength of this spin—spin coupling between states dressed by the dynamic gradient field is
obtained by simply plugging €; ,,, equation (22), into (11). Since the equations defining the coupling constants
Ji,x are identical for the static and dynamic case, we do not repeat equation (11) here. This interaction could be
used for conditional quantum dynamics without the need for driving sideband resonances as was experimentally
demonstrated in the static gradient case [ 14, 26]. Concrete examples for spin—spin coupling between up to 16
ions exposed to an axial dynamic gradient field are discussed below and in the appendix.

Ifa dynamic field with a gradient in the radial direction is applied to an ion string, then the contributions
from different radial vibrational modes to the spin—spin coupling in equation (11) partially cancel each other.
This cancellation is particularly significant, if only two ions are present and the trap parameters are such that the
center-of-mass (COM) mode and the stretch mode are nearly degenerate.

5. Examples for implementations

The equivalence of static and dynamic MAGIC shown above allows for applying results obtained using static
MAGIG, such as [26, 33, 34], to dynamic MAGIC. One consequence is that the scheme proposed here—
dynamic MAGIC combined with dressed states—does not require to null the dynamic magnetic field at the ion
position. On the contrary, the off-set field B; at position z;is useful to create the energy splitting of the dressed
state.

5.1. Single- and two-qubit gates

Single-qubit gates using the dressed states |+ ) as a qubit can be carried out by employing a resonant RF-field
[35-37]. In order to implement conditional quantum gates, for example 2-qubit gates, the application of an
RF-field tuned (close) to resonance with a motional sideband transition between dressed states can be used
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[1, 17,22, 38, 39]. In this case, the effective Lamb-Dicke parameter ¢; , allows for the necessary coupling between
qubit states and motional states [10]. Gates with dressed states in a static field gradient have been proposed and
successfully implemented with high fidelity [17, 35, 37-39].

As a concrete example for dynamic MAGIC with dressed states we consider '”'Yb ™ ions exposed to a
resonant driving field with a gradientof B’ = 65T m™ ', 1, = 27 x 500 kHz leadingto ¢;; ~ 0.01 and a Rabi
frequency characterizing the RF gate field of 27 x 0.1 MHz. According to [38] (where dressed states in a static
gradient are considered), we expect a gate time of 200 is and a gate fidelity in the regime 0f 0.998.

In existing implementations of dynamic MAGIC, a static bias magnetic field having a well defined
magnitude is applied to a qubit resonance in order to make it to first order field insensitive and therefore only
weakly sensitive to ambient magnetic fields, and thus enhance its coherence time [13, 24, 29, 40]. An additional
benefit from using dressed states that exist in a non-zero dynamic gradient field would be that dressed qubits are
already resistant against dephasing by ambient noise fields [ 17, 35-39] without application of an accurately
controlled, strong bias field. The dressed state qubit’s coherence time would be sensitive to fluctuations in the
amplitude of the dressing field. This sensitivity could be strongly reduced by the use of a dressing field at
frequency 2; [38].

Dynamic MAGIC combined with dressed states can as well be realized with a dynamic gradient along the
axial direction of an ion string where each ion is exposed to a different dynamic field. Because the axial
eigenmodes are characterized by alower frequency than the radial modes, and the coupling € between internal
and motional states is proportional to 1/73/2 (equation (22)), such an arrangement enhances this coupling.
Also, the spin—spin coupling J induced by a dynamic gradient is proportional to 1/v~2 (equation (11)), and is
therefore stronger in the axial direction than in the radial direction for a given size of the gradient.

In what follows we consider concrete examples for coupling constants that could be achieved
experimentally. Using a dynamic gradient B’ = 35T m™ ' (as achieved in previous experiments [13]) and an
axial trap frequency v = 300 kHz, the spin-motion coupling for two *Be ™ ions amounts to g1 = 0.05,a
magnitude useful for many experiments, for instance, for conditional quantum gates. A dynamic gradient
B’ = 200 Tm ™' appears realistic in future experiments leading again to g1 ~ 0.05, now for an axial trap
frequency v; = 27 x 1 MHz. More concrete examples of coupling strengths which can be expected from this
scheme are given in appendix B.

5.2. Long-range spin—spin coupling

The generalization of Hamiltonian equation (3) to Nions exposed to a static gradient gives rise to spin—spin
coupling in a static gradient. Dressed states created by a dynamic gradient exhibit the same type of spin—spin
coupling. In section 4, we have shown that a suitable transformation of Hamiltonian equation (20) reveals such a
long range spin—spin coupling between all pairs of ions exposed to a resonant dynamic gradient field exactly as
given for the static case in equation (11).

The J coupling constant (proportional to B'?/v7 for a static or resonant dynamic field) in the presence of a
gradient B’ = 200 T m™'and with v, = 27 x 1 MHz amountsto 27 x 1.5 kHz allowing for a CNOT gate
time of about 171 us. This in turn gives a ratio between experimentally achieved coherence times of dressed
states and gate duration of about 3 x 10*. So far, N = 2 ions undergoing conditional quantum dynamics in a
trapping zone have been considered as a building block of a scalable device [41]. Trapping N > 2ionsina
trapping zone and taking advantage of long-range spin—spin coupling opens new possibilities for quantum
simulations with individually addressed spins and for multi-qubit gates accelerating quantum algorithms [26].
In the appendix we give exemplary coupling matrices for up to 16 ions.

This long-range spin—spin coupling can be tailored for a specific purpose by adjusting global and local
trapping potentials in ion traps, even while carrying out a simulation or computation [33, 42, 43]. Such on-the-
fly tailoring of potentials can be achieved by changing small voltages applied to segmented trap electrodes.

5.3.Individual addressing of ions
A non-zero dynamic field can have a further advantage, since it allows for individual qubit rotations using an RF
driving field at frequency €2; specific for each individual ion. Thus, closely spaced, interacting ions exposed to a
dynamic gradient close to resonance could be individually addressed [44] in the same way as it was done with a
static field gradient by simply dialing in the appropriate RF frequency for each qubit[12, 14, 20]. Using the
parameters given above (two *Be ™ ions, B’ = 200 Tm ™', 74, = 27 x 1 MHz) we estimate a difference of
Aw = 27 X 10 MHz in the addressing frequency for a resonant dynamic gradient field. The probability p to
excite ion A off-resonantly with a single-qubit rotation aimed on ion B is determined by
p = Q¥/(? + Aw?) ~ 10~*assuminga typical resonant Rabi-frequency Q = 27 x 100 kHz for ion B. More
examples for individual addressing are given in the appendix.

The novel concept introduced here—with the features summarized in the introduction and discussed in
more detail above—should allow for a decisive reduction of experimental complexity and, at the same time,

7
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opens new perspectives for an RF-based approach to quantum computation and quantum simulations with
trapped ions.
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Appendix A. Two-qubit gates in the dressed-state picture

In the main text of this article, we concentrate on conditional multi-qubit gates described by H; equation (10),
which is directly induced by a single static or resonant dynamic gradient field. However, also Mglmer—Serensen
like gates [22] can be performed with MAGIC[11, 17, 25, 38, 39] with and without dressed states. In this section,
we discuss some possibilities of carrying out Melmer—Sgrensen-type gates in the dressed-state picture of
dynamic MAGIC. In general, there exist a large family of possibilities to carry out two-qubit gates with MAGIC.
Therefore, the examples discussed here represent only a small selection of possible implementations. In the first
subsection, we transform the Mglmer—Sgrensen gate suggested in [11] into the dressed state picture to
investigate similarities and differences between static and dynamic MAGIC. Then, we outline proposals for two
new strategies for Mglmer—Serensen-type gates, where the coupling between motional and internal degrees of
freedom is created by a resonant dynamic gradient field and two spatially homogeneous RF fields that drive the
actual gate.

A.1. A direct Mglmer—Sgrensen gate
In this section, we discuss—using the dressed-state picture—the direct implementation of a Mglmer—Serensen
gate with dynamic MAGIC as proposed in [11] and realized in [13] and described by the Hamiltonian given in
equation (12). In this case, two detuned dynamic gradient fields are applied that induce the Mglmer—
Serensen gate.

The Hamiltonian from equation (12) is given in the rotating frame of the ion by

H = /w,ala, + fZQj,n(USLj)e*i(W"*“’O)' + oWeilws—woty(g ¥ 4 g, (A.1)

under the assumption €2; = 0. We define the dressed-states by |+) = (|0) + |1))//2 and
|—) = (|0) — |1))/~/2, which transforms the operators o into

1 1
o = E(EZ +X-X), o= E(EZ — Yy + ). (A.2)
As a consequence, the Hamiltonian in the dressed-state picture is given by

H= ﬁl/na:[a,, + ﬁQj,n{Zgj)cos[(wB — wp)t]
+1i(2D — 2P)sin[(wp — wo)t]} (@) + a,). (A.3)

The application of two fields with frequencies wi — wy = +(y, — &) with arbitrary but fixed motional mode 1

leads to a cancellation of the term proportional to sin[(wp — wy)t]. The interaction between the motional and
internal degrees of freedom is thus given by the effective Lamb-Dicke parameter € = €); ,, /17, and the oscillation
described by cos[(wp — wy)t]. Decoupling of motional and internal degrees of freedom analog to equation (7) is
not possible due to the time dependence of the interaction. However, a transformation into the interaction
picture of the motional modes leads to a Mglmer—Sgrensen type Hamiltonian given for two ions by

H=75(Q,20 + 0,52P) e + a,e o). (A.4)

The time evolution under this Hamiltonian with duration T = 27 /6, therefore, yields a controlled-phase gate
[22]

U, = exp [12%%2929]. (A.5)

The interaction strength can be determined analog to [45] with the identification Q1 = €, , = €j 24, where Q2 is
the driving strength and 7) the Lamb-Dicke parameter. Hence, using equation (23), we find

3 QI,HQZ,n

1%
]1,2 =2 - 251,n52,nVn§- (A6)

The use of two RF-sources leads to a factor of two and the active driving of a motional side band leads to a factor
of 1, /6. This increases the coupling strength compared to equation (11) since ¢ can be chosen such that § < .
However, this conditional phase gate is only independent of the vibrational state, if the time T'is chosen correctly,
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whereas the spin—spin interaction described by equation (11) is independent of the vibrational states for all
times.

A.2. An indirect Mglmer—Sgrensen gate
In this section, we discuss a new idea to create a Mglmer—Serensen gate where the gate itself is performed with
two fields without gradient and the coupling between the internal and motional degrees of freedom is created by
aresonant dynamic gradient field. This approach is based on methods used in [14, 38, 39]. In these cases, a static
gradient field was used to create the coupling between internal and motional degrees of freedom.

To create the coupling, we assume a resonant gradient field with wp = wy (as in equation (12)) leading to the
Hamiltonian

7 , ,
H. = /w,a)a, + EQjagj) + ﬁQj,,,JECJ)(aJ + ay,) (A7)

in the rotating frame of the ion. We will discuss two different ways for the additional blue and red detuned pulses
to create the gate.

A.2.1. Detuned driving fields in z-direction. In our first approach, the additional detuned gate fields are applied
along the z-direction and are described by

H, = 78, cos(w,t) O'(Zj) (A.8)

with frequencies w, = €; £ (v, — 6) and Rabi frequency 2, = 1, B, //2. The transformation into the rotating
frame of the ion does not change this Hamiltonian. The transformation into the dressed state picture transforms
H_ (equation (A.7)) into

H,ps = /va, a, + gﬁjzg" + 79,29 @) + a), (A.9)
which has exactly the form of equation (3). The transformation of H,leads to
H,ps = — /1§, cos(w, 1) LY. (A.10)
The state dependent shifting of the eigenmodes described by the transformation given in equation (7) transforms
H, ps into equation (9) and H, pg into

H,sp = — 79, cos(w, 1) [S esin@i =00 4 $0)e=sintai-ay)], (A.11)

We assume to be in the effective Lamb-Dicke regime and therefore expl[e; ,, (a] — a)l =1+ ¢, (a] — a,). A
transformation into the interaction picture of the dressed-state qubit and the motional modes finally leads in the
RWAto

Hons = — /i 05 — SD)(afel® + a,e7), (A.12)
where we have already taken both driving fields with w, = €; & (5, — 0) into account. This interaction can
create a Mplmer—Serensen gate with the transition strengths

— Qg 51,n52,n
—
The Molmer—Serensen gate is not influenced by the spin—spin interaction described by Hj, equation (10), which

is also present, because [, ® ¥,, ¥, ® X, + ¥ ® X_]=0. Furthermore, the Mglmer—Segrensen gate is in
general much faster and the term H; could therefore be neglected for short time scales.

Oms (A.13)

A.2.2. Detuned driving fields in x-direction. A second method analog to [38] is to use a driving field in x-
direction given by

H, = 71 cos(wyt) o) (A.14)

with w, = wy + Q; £ (v, — 6). The transformation into the rotating frame of the ion leads to
Herp = Q. [Ug)ei(wo—wx)t + Ug)e—i(wo—wx)t], (A.15)

where fast oscillating terms with frequency wy + w; have been neglected. The transformation into the dressed-
state picture leads to

Hyps = Q{20 cos[(wo — wo)t] + i[2Y — ZD]sin[(wo — wy)t]}. (A.16)
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Table B1. Coupling constants & between ions and the COM mode, spin—spin coupling
Jik = Jjx/(2m) and frequency difference A® = Aw/(2m) with Aw = w,, — w,, for
N = 2ions exposed to a constant gradientof B’ = 35Tm ™ 'or B’ = 200 T m ™.

B =35Tm ! B =200Tm '
Ion € Ji,2/Hz A&/MHz € Ji2/kHz A&/MHz
7lyp* 0.05 164 2.76 0.26 5.36 15.8
Be™ 0.05 498 4.00 0.27 16.3 228

The shifting of the eigenmodes described by equation (7) leads to
H,sp = Q{20 cos[(wy — wy)t] + i[BY esin@i—a0
— 2D e gn@i—an]sin[(wy — wy)t]}. (A.17)

The ¥, term vanishes in the interaction picture (dressed-state qubit and shifted eigenmodes) due to the RWA
and we finally arrive in the Lamb-Dicke regime at

Hems = /2,005 — 29 (afel® + a,e 1), (A.18)

where we have already taken both driving fields with wy, = wy + ©; £ (15, — 0) into account. This Hamiltonian
is up to a minus sign exactly the same as equation (A.12) and implements therefore also a Mglmer—
Serensen gate.

Appendix B. Examples

In this appendix we present exemplary values for the coupling constants ¢, equation (4), between trapped ions
and the COM mode, which is equal for all ions, as well as the spin—spin coupling Ji, equation (7), and the energy
splitting of the dressed qubits 7w (z), equation (15), for different types of ions, different magnitudes of the
dynamic gradient field configurations, and different secular trap frequencies. Furthermore, we show concrete
exemplary results for a spatially constant dynamic gradient field and results for a gradient field that is created by a
single conductor and thus varies spatially.

We first calculate numerically the equilibrium positions of all ions in a linear trap with harmonic axial
confinement. These depend on the ions’ mass and on the secular trapping frequency v; (COM mode). Then, we
determine the frequencies 24, of the normal vibrational modes and the expansion coefficients b; , for n > 1,
equation (2).

Asillustrative examples, we show results for a trapping frequency v = 27 x 120 kHz using '7'Yb* ions and
for v = 27 x 300 kHz using °Be" ions. The qubitin 7'Yb" is represented by [S; /, F = 0) and
[S1/2 F =1, mp =& 1). This transition is to first order field sensitive, which is important when using static
MAGIC. For °Be" we assume that the qubit is realized by the states |S, /,, F = 2, my = 1)and
[S1/2, F =1, mg = 1)asused e.g. in [29]. A constant magnetic field can be applied to make this transition first-
order field insensitive. First-order field insensitive states can be only used for dynamic MAGIC. The magnetic
moment /i, ,, is given by the Bohr magneton 15 for both qubits.

The coupling constants € and Jj and the difference in dressed-qubit resonance frequencies (relevant for
individual addressing) for two ions exposed to the same dynamic gradient are given in table B1. The complete
coupling matrix {Jj } for N = 16 ions s displayed in table B2.

As an example for how a dynamic gradient can be generated, we consider the probably simplest possible
arrangement: a single wire oriented perpendicular to a linear string of ions. In that case the gradient B’ acting on
aparticular ion depends on that ion’s position. In what follows, B’ specifies the gradient at the location of the
firstion placed h = 30pm above and Az = 10um (approximately equal to the distance between two ions) aside
of the conductor, whereas all other ions are exposed to a smaller gradient falling offas B’ = 1/r2 with rbeing the
ion’s distance from the conductor. The gradient parallel to the axial motion, givenby 9,B = B’ - z/r,
contributes to the coupling between internal and motional states. The spin—spin coupling matrix {J } resulting
from this configuration for "Be™ and B’ = 200 T m™ " is given in table B3.

In this case, the spin—spin coupling strength is reduced by about one order of magnitude between the first
and the last two ions due to the decrease of the gradient. For a constant gradient, the spin—spin coupling between
different pairs of ions also changes due to the spacing of the ions varying along the ion string. However, the order
of magnitude of the coupling stays the same (see table B2). For the case of a gradient generated by a single
conductor, the addressing frequencies and coupling strengths € to the COM mode are given in table B4. Fora
constant gradient, ¢ is equal for all ions whereas ¢ differs from ion to ion when the gradient varies spatially. Due
to the specific geometry described in the above example, the spin-motion coupling first increases due to better
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Table B2. Spin—spin coupling Jj /(2) in kHz for Be " and a constant gradient of B’ = 200 T m™ ' for N = 16 ions.

Ion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 575 4.4 3.67 319 284 257 236 218  2.02 1.89 1.77 1.66 1.56 1.46 1.36
2 5.75 496 405 349 3.1 2.8 256 236 219  2.04 1.91 1.79 1.68 1.57 1.46
3 4.4 4.96 4.51 382 336 3.02 275 254 235 219 205 1.92 1.8 1.68 1.56
4 3.67 405 451 422 366 327 297 272 252 234 219 205 1.92 1.79 1.66
5 319 349 382 422 4.04 355 3.2 293 27 2.51 234 219 2.05 1.91 1.77
6 284 3.1 336  3.66 4.04 392 349 317 291 2.7 2.51 234 219 2.04 1.89
7 257 28 3.02 327 355 392 385 345 316 291 2.7 252 235 219 202
8 236 256 275 297 32 349  3.85 383 345 317 293 272 254 236 218
9 2,18 236 254 272 293 317 345 3.83 385 349 32 297 275 256 236
10 202 219 235 252 27 291 316 345 3.85 392 355 327 302 28 2.57
11 1.89 2,04 219 234 251 2.7 291 317 349 392 404 366 336 3.1 2.84
12 1.77 1.91 205 219 234 251 2.7 293 32 355  4.04 422 382 349 3.19
13 1.66 1.79 192 205 219 234 252 272 297 327 3.66 422 451 405 3.67
14 1.56 1.68 1.8 192 205 219 235 254 275 3.02 336 382 451 496 4.4
15 1.46 1.57 1.68 1.79 1.91 2.04 219 236 256 28 3.1 349  4.05 496 5.75
16 1.36 1.46 1.56 1.66 1.77 1.89 202 218 236 257 284 319 367 44 5.75

Table B3. Spin-spin coupling J; ;/(27) inkHz for N = 8 °Be* ions exposed to a dynamic
magnetic field gradient generated by a single conductor with B’ = 200 T m ™' at the
position of ion 1.

Ton 1 2 3 4 5 6 7 8

1 3.52 2.45 1.70 1.20 0.86 0.61 0.43
2 3.52 3.93 2.67 1.87 1.32 0.94 0.66
3 2.45 3.93 2.92 2.00 1.40 0.99 0.69
4 1.70 2.67 2.92 2.00 1.38 0.97 0.67
5 1.20 1.87 2.00 2.00 1.37 0.94 0.64
6 0.86 1.32 1.40 1.38 1.37 0.96 0.64
7 0.61 0.94 0.99 0.97 0.94 0.96 0.69
8 0.43 0.66 0.69 0.67 0.64 0.64 0.69

Table B4. Coupling to the COM mode ¢ and addressing frequencies &(z) = w(z) /(27) for N = 8 *Be ™ ions in a spatially varying dynamic

gradient generated by a single conductor with B’ = 200 T m ™" at the position of ion 1.

Ion 1 2 3 4 5 6 7 8
B =35Tm"’ &(z)/MHz 6.97 6.06 524 456 4.00 3.54 3.14 2.76
e 0.025 0.034 0.031 0.027 0.022 0.018 0.014 0.011
B' =200 Tm™" @(z)/MHz 39.8 34.6 29.9 26.0 229 20.2 17.9 15.8
c 0.143 0.19 0.18 0.15 0.12 0.10 0.082 0.065

alignment of the directions of the gradient and the motional excitation, before it decreases due to the decreasing

gradient.
The above configuration using a single straight wire for generating a dynamic gradient serves as an

illustrative example. A future experimental realization of the dynamic gradient scheme using dressed states is

likely to use a different configuration of gradient-generating elements.
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