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Abstract
Novel ion traps that provide either a static or a dynamicmagnetic gradientfield allow for theuse of radio-
frequency radiation for coupling internal andmotional states of ions,which is essential for conditional
quantum logic.We show that theHamiltoniandescribing this coupling in thepresence of a resonant
dynamic gradient, is identical, in a dressed state basis, to theHamiltonian in the case of a static gradient.
The coupling strength is in both cases describedby the same effectiveLamb-Dickeparameter. This insight
canbeused toovercomedemanding experimental requirementswhenusing adynamic gradientfield for
state-of-the-art experimentswith trapped ions, for example, in quantum information science.At the same
time, this insight opensnewexperimental perspectives bywayof using a single resonant or detuned
dynamic gradientfield, inducing long-range coupling, for conditionalmulti-qubit dynamics.

1. Introduction

Experiments with atomic trapped ions have played a leading role in the development of experimental quantum
information science [1–3].Well isolated from their environment, trapped ions are ideally suited for investigating
fundamental questions of quantumphysics, and are a promising candidate for quantum simulations and
scalable universal quantum computing reaching beyond the capabilities of classical computers [4]. Internal
electronic states serving as qubits are coherently prepared using electromagnetic radiation in the optical or
radio-frequency (RF) regime, and an upper limit for the coherence time of ionic qubits is set by the coherence
time of this radiation. For conditional quantumdynamics with two ormore qubits, represented by several ions
confined in the same trap or trapping region, the collective vibrationalmotion is coupled to the internal
dynamics of individual ions, thus serving as a quantumbus.

Using laser light for coupling ionic qubits via this quantumbus has been standard for some decades, since
only with light in and around the visible regime the Lamb-Dicke parameter η, measuring the coupling strength
between internal andmotional states [5], takes on a sufficiently large value in typical traps. Driving solely a single
desired ion out of a collection of trapped ions, typically spaced apart by a fewmicrometers, also required optical
radiation that can be focused down to a spot size smaller than the inter-ion separation. In numerous
experiments laser light has been successfully used to deterministically prepare quantum states of trapped ions,
even complete quantumalgorithms [6, 7] and quantum simulations [8, 9] have been implemented.

Thecomplexityof experimental set-ups canbe reduceddecisively,whenRFradiation isused todirectlydrive the
ions’dynamics insteadof taking thedetourof imprintingRF signals ontooptical beamsand then steering theseoptical
beams towards trapped ions.With laserbeams, frequency-, phase-, andamplitudenoise, diffraction andbeampointing
instabilities in theoptical domainpose additional problems that canbe avoidedby thedirectuseofRF radiation.

Using RF radiation for coupling internal andmotional dynamics becomes possible when an additional,
spatially varying field is applied to an atom trap. This can be a static [10] or a dynamic [11]magnetic gradient
field. In both cases, an effective Lamb-Dicke parameter arises throughmagnetic gradient induced coupling
(MAGIC) even upon excitationwith RF radiation [12–17]. In addition, individual addressing of atoms using RF
radiation has been shown to be effective [12, 14, 16, 18–21].
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When employingMAGIC for trapped ions as a complementary approach to successful research based on
laser-driven ion trap quantum logic, spontaneous emission because of the finite lifetime of qubit states, or
spontaneous scattering caused by non-resonant laser light driving Raman transitions is not a concern for the
coherence time of qubits. As is the case for some laser-based gates [22], conditional quantumdynamics based on
magnetic gradient induced spin–spin coupling is tolerant against thermal excitation of the ions’ vibrational
motion.

Single-qubit quantum gates driven byRF radiation have been implementedwith an errorwell below 10−4

[23, 24], an important threshold for fault-tolerant quantum computing. Using a static field gradient, a quantum
byte (eight ions) could be addressedwith ameasured cross-talk between closely spaced, interacting ions in the
10−5 range [20].MAGICwas also employed to demonstrate two-qubit gates [13, 14, 17, 25], three-qubit gates
[26], and opens newpossibilities for quantum simulations and quantum computation [26, 27].

In this paperwe show that the addition of either a static or a dynamic gradient field to aCoulomb crystal of
trapped ions—in order to take advantage ofMAGIC—can be described by similarHamiltonians. It is shown
that theHamiltonian in a dressed-state picture, obtainedwhen applying a spatially varying resonant dynamic
field, is identical to the case of having a static gradient field and a spatially constant qubit driving field.

In current experiments where a dynamic gradientfield is applied, great care is taken to null the dynamic
magnetic field at the ions’ positions and thus to retain only a gradient of the dynamic field at this position
[13, 28, 29] in order to obtain high-fidelity two-qubit gates. Another approach is to use an extra dressing field to
reduce errors resulting froma non-zero offset field [25]. Here, we showhow atomic states dressed by the
dynamicmagnetic gradient field itself could be employed for conditional quantum gates, thus decisively
simplifying experimental efforts necessarywhen implementing the dynamicMAGIC scheme.

Before introducing the novel scheme and discussing it inmore detail, we briefly summarize its features: (i) It
dispenses with the demanding need to null the dynamic field at the ions’ locations. This could be particularly
important when implementing conditional quantumdynamics withmore than two ions. (ii)Atomic states
dressed by the dynamic gradientfield are insensitive to ambient field noisemaking it superfluous to apply a
relatively strong and stable biasfield in order to create qubits with long coherence time (so-called clock states).
(iii)Applying a dynamic gradient fieldwith the gradient pointing along the axis of weakest confinement of ions
in a linear trap becomes feasible, and, thus can decidedly enhance the coupling strength between qubit states and
motional states. (iv) It becomes straightforward to individually address ions exposed to such a dynamicfield
gradient with low cross-talk. (v) It is shown that long-range spin–spin coupling between dressed qubits arises
when applying a single dynamic gradientfield. Conditional dynamics arising from this coupling could be used
for quantum simulations and efficient quantum computation.

Inwhat follows, we consider coupling between internal andmotional states in the presence of a static
(section 2) or a dynamic (section 3)magnetic gradientfield.We recapitulate bothmethods and bring them into a
common representation starting by first considering a single atombefore demonstrating their similarity for
multi-qubit systems.

2. Staticmagnetic gradient

In this sectionwefirst outline how the application of a staticmagnetic field gradient to a single trapped atom
gives rise to coupling between the atom’s internal andmotional states. The summary below is based on results
published in [10] and illustrated, for instance, in [30]. Then, a collection of ions exposed to amagnetic gradient
field is considered, and the expression describing the coupling between internal states of different ions (spin–
spin coupling) induced by the gradient field is given. The derivation of this expression for spin–spin coupling can
be found in [31] (see also [12, 32] for physical interpretations).We include thismaterial here tomake the present
article reasonably self-contained and to establish the notation.

For a staticmagnetic gradient parallel to the z-axis, theHamiltonian describing a single atom jwith energy
level spacing 0�w confined in a harmonic trap at position zj expanded up tofirst order in thefield gradient is
given by

H B zB a a
1

2 2
, 1z

j z
z
j

n n nstatic 0 0� �w s
m

s n= + + ¢ +( ) ( )( ) ( ) †

with the ion’smatrix element of themagnetic dipolemoment zm , themagnetic field B z B zB0= + ¢( ) , and the
Pauli-zmatrix zs . Here, an

† and an describe the creation and annihilation operators of the vibrationalmode in
the harmonic trapwith angular frequency nn . The position z of ion j is given by z z zj j= + D with its
equilibriumposition zj and the displacement zjD . The displacement can bewritten in terms of the normal
vibrationalmode n as
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z b q a a 2j j n n n n,D = +( ) ( )†

with the help of the coefficients b1 1j n,- -- that reflect how strongly ion j participates inmotionalmode n (if
only a single ion is considered, then b 11,1 º ). Here, q m2n n� n= ( ) describes the atom’s spatial extent in the
ground state of the harmonic trapping potential. As a consequence, Hamiltonian equation (1) can be rewritten
as

H z a a a a
1
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static ,� � �w s n n e s= + + +( ) ( ) ( )( ) † † ( )

with the position dependent level splitting z B z Bj z j0 0 �w w m= + + ¢( ) ( ) and the coupling strength2

B b q
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,
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In this way, an interaction between the internal and external degrees of freedom is createdwhenever a qubit with
position dependent level splitting is used. No additional lasers or RF radiation are needed to create this
interaction.Note that B¢ indicates themagnitude of the staticmagnetic field gradient.

Now,we consider the application of an additional driving fieldwith angular frequency Dw close to the
atomic resonance zjw ( ). The interaction between this driving field and the trapped atom is described by

H kz t
2

exp i h.c. 5D
D

x
j

D
�

s w=
W

- +[ ( )] ( )( )

with k being the projection of thewave vector k
G
of the driving field onto the z-direction. An expansion of z

around its equilibriumposition reveals an interaction between internal and external degrees of freedomwhose
strength is governed by the Lamb-Dicke parameter b q kj n n,h = [5]. However, when the applied radiation has a
longwavelengthλ, for instance in the RF regime, then thewavenumber k 2p l= is too small (in typical ion
traps) to yield a sizable η, and, thus the coupling between internal andmotional states, that wouldmake
excitation ofmotional sidebands effective, is negligible. A small value of k can be interpreted as the linear
momentum k� transferred to the atomupon absorption or emission of a photon being too small to change the
trapped atom’smotional state. However, in the presence of a gradientfield (equations (1), (3) and (4))motional
sideband excitation by a driving field (equation (5)) becomes effective as outlined below.

The transformation H He eS Sj n j n, ,= -˜ [10] of Hstatic (equation (1)) leads to decoupling of internal and external
degrees of freedom andwe obtain

H a a
2

. 6
j

z
j

n n nstatic
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�
w

s n= +˜ ˜ ˜ ( )( ) †

The operator Sj n, for a single ion j andmode n is given by

S a a , 7j n j n n n z
j

, ,e s= -( ) ( )† ( )

signifying an internal-state dependent shift of the normalmodes induced by themagnetic gradient.
The same transformation applied to the driving fieldHamiltonian (equation (5)), H He eD

S
D

Sj n j n, ,= -˜
yields [10]

H
2

e e e e , 8D
D a a a a t ti ij n n n j n n n D D, ,

�
s s=

W
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+
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-
- - -˜ ( )( ) ( )( ˜ ˜ ) ( ˜ ˜ )† †

which reveals the role of j n,e as a generalized Lamb-Dicke parameter. Expanding HD˜ in j n,e shows thatmotional
sidebands of the internal resonance can be resonantly driven, for instance, if D j nw w n= o .

In the summary abovewe already established the notation forN ions ( j n N1 ,- - ) even though, so far, a
single harmonically trapped atom ( j n1, 1º º )was considered. Now,we turn to the case ofN ions confined
in a linear trap: the generalization of equation (3) toN ions and its transformation by He eS S

static
- with

S Sj n j n, ,= å leads to [31]
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This reveals a direct interaction of the internal degrees of freedom: a long-range interaction between the ions’
internal states (henceforth referred to as spins) induced by the staticmagnetic gradient described by

H J
2

, 10J
j k

j k z
j
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k

,
� å s s= -

<

( )( ) ( )

2
Equation (4) is valid in the regime of a linear Zeeman effect. Inmore general cases the coupling strength is given by b qj n z j j n n n, ,e w n= ¶∣ ∣

where jw can be determined e.g. by the Breit–Rabi formula.
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with the coupling strength given by [31, 32, 43]

J . 11j k
n

n j n k n, , ,å n e e= ( )

Again, we note that this interaction is induced solely by themagnetic gradient without any additional radiation.
Furthermore, this spin–spin coupling is independent of themotional degrees of freedom and enables therefore
so called hot quantumgates, as long as the total potential confining the ions (the external trapping potential plus
theCoulomb interaction between the ions) remains a harmonic potential.

3.Dynamicmagnetic gradient

The scheme described byOspelkaus et al [11] allows for spin–spin coupling via a dynamicmagnetic field
B z t t B z, cos Bw=( ) ( ) ( ), with a gradient of the amplitude perpendicular to the string of ions.When
recapitulating this scheme inwhat follows, we take the gradient of this dynamicmagnetic field to point along the
z-axis. Thus, the string of ions is taken to be parallel to the x-axis and parallel to the electrode providing the
oscillatingmagnetic fields and the ion and themagnetic field are coupled via thematrix element xm of the
magnetic dipolemoment3. In analogy to the static case, we express the position z via the equilibriumposition zj
plus a small displacement zD and expand themagnetic field B z B zBj= + D ¢( ) around zj. In this way, we arrive
at theHamiltonian of a single ion j coupled to the radialmode n

H a a t B

t B b q a a
2
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j

B x j
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As a consequence, the interactionHamiltonian in the rotatingwave approximation (RWA) is given by

H ae e h.c. 13j
t

j n n
t

osci,I
i

,
i n�s= W + W +d d n

+
- - +( ) ( )( )

with the detuning B 0d w w= - , the Rabi frequencies

B 2 , 14j j x �mW = ( ) ( )
and

B b q 2 . 15j n x j n n, , �mW = ¢ ( ) ( )

Similar to the static case, the coupling between internal andmotional degrees of freedom is caused by the
magnetic gradient (equations (12) and (13)).

By applying two dynamicmagnetic fields with equal amplitude and opposite detuning close to the red- and
blue sideband, a spin–spin interaction can be generated [11]. In general, a spin–spin interactionwithout
additional excitations via the carrier transition is desirable. Excitation via the carrier is suppressed due to off-
resonant excitation (detuning of the driving fields by about nn ), and it can be neglected if j nnW � . This leads,
togetherwith equation (14), to the restriction Bx j n�m n� for themagnetic field. Typicalmagnitudes are

2 10n
6n p= ´ Hz and 10B

10� m = - THz−1, which leads to B 10j
4-� T. As a consequence, a highmagnetic

gradient and a small absolutemagnetic field strength are needed for high-fidelity two-qubit gates. Therefore,
considerable experimental effort is devoted to an exact geometry of the electrodes generating themagnetic fields
and to exact positioning of the ions [13, 28, 29].

4.DynamicMAGIC in a dressed-state basis

Inwhat follows, we show that the approach using a resonant dynamicmagnetic gradient for coupling internal
and external degrees of freedom is equivalent to the static gradient approachwhen expressing theHamiltonian
for the dynamic case in a dressed-states basis. Furthermore, it is outlined how a non-resonant dynamic gradient
allows for interesting variations of spin-motion coupling.

For this purpose, we transform theHamiltonian Hosci given in equation (12) into the rotating frame of the
ionwith B 0d w w= - , resulting in

H B B b q a a a a
2

e e 16I
x t t

j j n n n n n n n
i i

, �
m

s s n= + ´ + ¢ + +d d
+

-
-( ) [ ( )] ( )† †

for a single ion and a singlemode.

3
For details on thematrix elements zm and xm see [11].
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The eigenstates of the operator t texp i exp is d s d- ++ -( ) ( ) are given by

g e
1

2
e e 17t ti 2 i 2oñ = ñ o ñd d-∣ ( ∣ ∣ ) ( )

with the bare atomic states gñ∣ and eñ∣ . The states oñ∣ are equivalent to the often used time-independent dressed
states for 0d = . For 0d ¹ the states oñ∣ deviate from the dressed states and become time dependent (for a
detailed comparisonwith the usual dressed states for 0d ¹ see section 4.1). As a consequence, the Pauli-zmatrix
in the basis oñ∣ is given by

T Te e 18z
t ti is sS = +d d

+
-

-( ) ( )†

with the unitary transformation

T g e
e

2

e

2
. 19

t ti 2 i 2
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⎠⎟

⎛
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⎞
⎠⎟∣ ∣ ∣ ∣ ∣ ∣ ( )

This relation shows that the strength of the interaction between the bare states (proportional to s s++ -)
transforms into the level splitting of the states oñ∣ (proportional to zS ) as displayed infigure 1.

TheHamiltonian a an n n�n † describing the energy of the vibrationalmodes is invariant under all these
transformations. As a consequence, the resultingHamiltonian H THT T t T ti dt= +oñ ( ( )) ( )∣ † † leads to

H
B

a a
B b q

a a
2 2 2

. 20x j
z n n n

x j n n
n n z x

,� �m
n

m d
= S + +

¢
+ S + Soñ ( ) ( )∣

† †

Thefirst three terms exhibit exactly the same form as theHamiltonian of the static gradient field given in
equation (3). The last term results from the fact that for 0d ¹ the transformationmatrixT becomes time
dependent, leading to an additional term. A comparison of theHamiltonians Ho, equation (20), and H ,static

equation (3), leads to the identifications

z
B

21j
x j

�
w

m
=( ) ( )

and

B b q

2
. 22j n

x j n n

n
,

,

�
e

m
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=
¢ ( )

A comparisonwith equation (4) reveals that the coupling betweenmotional and internal degrees of freedom in
static and dynamicMAGIC are not only of the same formbut are described by exactly the same effective Lamb-
Dicke parameter using the appropriatematrix element of the atomicmagneticmoment. Using equations (14)
and (15), we canwrite z 2j jw = W( ) and

23j n j n n, ,e n= W ( )

revealing the connection between the coupling constant j n,e and the sidebandRabi frequency. Note that the
effective Lamb-Dicke parameter j n,e is determined by the position dependence of the level splitting zjw ( ), but
not by the detuning δ. The detuning defines the relevant reference framewhen applying single-qubit rotations.
When choosing a dynamic gradient field (that induces this spin-motion coupling)with zero detuning, then
single-qubit rotations resulting from the additional term 2 x�d S( ) are avoided. If 0d ¹ , this additional single-
qubit rotationwill affect the overall evolution.Depending on how exactly a two-qubit gate is carried out, this
might lead to a reduced effective coupling due to fast oscillations (formore details see appendix A).

Figure 1. Left: the interaction strengthΩ between a spatially varying driving field B z t B z t, cos Bw=( ) ( ) ( ) and a two-level atom.
Right: in the dressed-state picture this position dependent interaction leads to a position dependent level splitting ED of states oñ∣ .
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4.1. Spin-motion coupling using time-independent dressed states
Belowwe discuss another approach helpful to better understand the effect of detuning of the dynamic gradient
field. For this purpose we consider time-independent dressed states.

The interaction of a classical drivingfieldwith frequency Bw with a two-level atomwith energy splitting 0�w
in the rotating frame of the driving field is given in the RWAby

H
2 2

. 24z
� �d

s s s= - +
W

++ -( ) ( )

with B 0d w w= - and the Rabi frequencyΩ. The eigenstates of thisHamiltonian, given by

g e g ecos sin , sin cos 25dress dressq q q q-ñ = ñ - ñ +ñ = ñ + ñ∣ ∣ ∣ ∣ ∣ ∣ ( )
with tan 2q d= W( ) , are called dressed states.We transform equation (12)first into the rotating frame of the
driving field and consecutively into the dressed-state picture resulting in

H a a

B b q
a a

2
sin 2 cos 2 26

z n n n

x j n n
n n z x

dress
2 2

,

� �d n
m

q q

= + W S +

+
¢

+ S + S

˜

( )[ ( ) ˜ ( ) ˜ ] ( )

†

†

with jS̃ denoting the Pauli-matrices in the dressed state picture. The factor between square brackets in the third

termon the right-hand side of equation (26) is of the form n S
G G

· ˜ with n 12 =
G∣ ∣ and can thus be interpreted as a

generator of a spin-rotation around the axis n cos 2 , 0, sin 2 .Tq q=
G ( ( ) ( )) Themotional degree of freedom is now

coupled to n S
G G

· ˜ . As a consequence, a detuning causes a change in the direction n
G
of the coupling, but does not

change the coupling strength itself given by the effective Lamb-Dicke parameter j n,e .
The differences between the states oñ∣ defined in equation (17) and dressoñ∣ defined in equation (25) are: (i)

oñ∣ are defined in the reference frame of the ion and dressoñ∣ in the reference frame of the driving field. (ii) oñ∣ are
time dependent for 0d ¹ whereas dressoñ∣ are time independent for 0d ¹ . (iii)Adetuning 0d ¹ leads in the
basis oñ∣ to an additional driving term 2 xd so( ) , whereas in the dressed-state picture it leads to a change of the
rotation axis n

G
. In both cases, the strength of the coupling determined by the effective Lamb-Dicke parameter

j n,e is independent of the detuning δ.

4.2. Long-range spin–spin coupling using a dynamic gradientfield
In the static case we obtain spin–spin coupling between all pairs of ions, equations (10) and (11), when
generalizing the expression for a single ion, equation (3), to the case ofN ions. In the case of a dynamic gradient
we are lead to the sameHamiltonian as in the static case: equation (20), with themagnitude of the static gradient
replaced by themagnitude of the dynamic gradient. Then the generalization to a string ofN ions aligned along
the z-axis again reveals a spin–spin interaction, as described by equations (10) and (11), induced by the dynamic
gradient. The strength of this spin–spin coupling between states dressed by the dynamic gradientfield is
obtained by simply plugging j n,e , equation (22), into (11). Since the equations defining the coupling constants
Jj k, are identical for the static and dynamic case, we do not repeat equation (11) here. This interaction could be
used for conditional quantumdynamics without the need for driving sideband resonances aswas experimentally
demonstrated in the static gradient case [14, 26]. Concrete examples for spin–spin coupling between up to 16
ions exposed to an axial dynamic gradientfield are discussed below and in the appendix.

If a dynamic fieldwith a gradient in the radial direction is applied to an ion string, then the contributions
fromdifferent radial vibrationalmodes to the spin–spin coupling in equation (11) partially cancel each other.
This cancellation is particularly significant, if only two ions are present and the trap parameters are such that the
center-of-mass (COM)mode and the stretchmode are nearly degenerate.

5. Examples for implementations

The equivalence of static and dynamicMAGIC shown above allows for applying results obtained using static
MAGIC, such as [26, 33, 34], to dynamicMAGIC.One consequence is that the scheme proposed here—
dynamicMAGIC combinedwith dressed states—does not require to null the dynamicmagnetic field at the ion
position.On the contrary, the off-set fieldBj at position zj is useful to create the energy splitting of the dressed
state.

5.1. Single- and two-qubit gates
Single-qubit gates using the dressed states oñ∣ as a qubit can be carried out by employing a resonant RF-field
[35–37]. In order to implement conditional quantum gates, for example 2-qubit gates, the application of an
RF-field tuned (close) to resonancewith amotional sideband transition between dressed states can be used
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[1, 17, 22, 38, 39]. In this case, the effective Lamb-Dicke parameter j n,e allows for the necessary coupling between
qubit states andmotional states [10]. Gates with dressed states in a static field gradient have been proposed and
successfully implementedwith high fidelity [17, 35, 37–39].

As a concrete example for dynamicMAGICwith dressed states we consider 171Yb+ ions exposed to a
resonant drivingfieldwith a gradient of B 65¢ = Tm−1, 2 500 kHz1n p= ´ leading to 0.01j,1e » and aRabi
frequency characterizing the RF gatefield of 2 0.1 MHzp ´ . According to [38] (where dressed states in a static
gradient are considered), we expect a gate time of 200 sm and a gatefidelity in the regime of 0.998.

In existing implementations of dynamicMAGIC, a static biasmagnetic field having awell defined
magnitude is applied to a qubit resonance in order tomake it tofirst order field insensitive and therefore only
weakly sensitive to ambientmagnetic fields, and thus enhance its coherence time [13, 24, 29, 40]. An additional
benefit fromusing dressed states that exist in a non-zero dynamic gradient fieldwould be that dressed qubits are
already resistant against dephasing by ambient noisefields [17, 35–39]without application of an accurately
controlled, strong biasfield. The dressed state qubit’s coherence timewould be sensitive tofluctuations in the
amplitude of the dressing field. This sensitivity could be strongly reduced by the use of a dressing field at
frequency jW [38].

DynamicMAGIC combinedwith dressed states can as well be realizedwith a dynamic gradient along the
axial direction of an ion stringwhere each ion is exposed to a different dynamic field. Because the axial
eigenmodes are characterized by a lower frequency than the radialmodes, and the coupling ε between internal
andmotional states is proportional to 1 3 2n- (equation (22)), such an arrangement enhances this coupling.
Also, the spin–spin coupling J induced by a dynamic gradient is proportional to 1 2n- (equation (11)), and is
therefore stronger in the axial direction than in the radial direction for a given size of the gradient.

Inwhat followswe consider concrete examples for coupling constants that could be achieved
experimentally. Using a dynamic gradient B 35¢ = Tm−1 (as achieved in previous experiments [13]) and an
axial trap frequency 300 kHz1n = , the spin-motion coupling for two 9Be+ ions amounts to 0.05j,1e = , a
magnitude useful formany experiments, for instance, for conditional quantum gates. A dynamic gradient
B 200¢ = Tm−1 appears realistic in future experiments leading again to 0.05j,1e » , now for an axial trap
frequency 2 1 MHz1n p= ´ .More concrete examples of coupling strengthswhich can be expected from this
scheme are given in appendix B.

5.2. Long-range spin–spin coupling
The generalization ofHamiltonian equation (3) toN ions exposed to a static gradient gives rise to spin–spin
coupling in a static gradient. Dressed states created by a dynamic gradient exhibit the same type of spin–spin
coupling. In section 4, we have shown that a suitable transformation ofHamiltonian equation (20) reveals such a
long range spin–spin coupling between all pairs of ions exposed to a resonant dynamic gradient field exactly as
given for the static case in equation (11).

The J coupling constant (proportional to B 2
1
2n¢ for a static or resonant dynamic field) in the presence of a

gradient B 200¢ = Tm−1 andwith 2 1 MHz1n p= ´ amounts to 2 1.5 kHzp ´ allowing for aCNOT gate
time of about 171μs. This in turn gives a ratio between experimentally achieved coherence times of dressed
states and gate duration of about 3 104´ . So far,N=2 ions undergoing conditional quantumdynamics in a
trapping zone have been considered as a building block of a scalable device [41]. Trapping N 2> ions in a
trapping zone and taking advantage of long-range spin–spin coupling opens newpossibilities for quantum
simulationswith individually addressed spins and formulti-qubit gates accelerating quantum algorithms [26].
In the appendix we give exemplary couplingmatrices for up to 16 ions.

This long-range spin–spin coupling can be tailored for a specific purpose by adjusting global and local
trapping potentials in ion traps, evenwhile carrying out a simulation or computation [33, 42, 43]. Such on-the-
fly tailoring of potentials can be achieved by changing small voltages applied to segmented trap electrodes.

5.3. Individual addressing of ions
Anon-zero dynamicfield can have a further advantage, since it allows for individual qubit rotations using anRF
driving field at frequency jW specific for each individual ion. Thus, closely spaced, interacting ions exposed to a
dynamic gradient close to resonance could be individually addressed [44] in the sameway as it was donewith a
staticfield gradient by simply dialing in the appropriate RF frequency for each qubit [12, 14, 20]. Using the
parameters given above (two 9Be+ ions, B 200¢ = Tm−1, 2 11n p= ´ MHz)we estimate a difference of

2 10 MHzw pD » ´ in the addressing frequency for a resonant dynamic gradient field. The probability p to
excite ionA off-resonantly with a single-qubit rotation aimed on ionB is determined by
p 102 2 2 4w= W W + D » -( ) assuming a typical resonant Rabi-frequency 2 100 kHzpW = ´ for ion B.More
examples for individual addressing are given in the appendix.

The novel concept introduced here—with the features summarized in the introduction and discussed in
more detail above—should allow for a decisive reduction of experimental complexity and, at the same time,
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opens newperspectives for anRF-based approach to quantum computation and quantum simulationswith
trapped ions.
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AppendixA. Two-qubit gates in the dressed-state picture

In themain text of this article, we concentrate on conditionalmulti-qubit gates described byHJ equation (10),
which is directly induced by a single static or resonant dynamic gradientfield.However, alsoMølmer–Sørensen
like gates [22] can be performedwithMAGIC [11, 17, 25, 38, 39]with andwithout dressed states. In this section,
we discuss some possibilities of carrying outMølmer–Sørensen-type gates in the dressed-state picture of
dynamicMAGIC. In general, there exist a large family of possibilities to carry out two-qubit gates withMAGIC.
Therefore, the examples discussed here represent only a small selection of possible implementations. In the first
subsection, we transform theMølmer–Sørensen gate suggested in [11] into the dressed state picture to
investigate similarities and differences between static and dynamicMAGIC. Then, we outline proposals for two
new strategies forMølmer–Sørensen-type gates, where the coupling betweenmotional and internal degrees of
freedom is created by a resonant dynamic gradient field and two spatially homogeneous RFfields that drive the
actual gate.

A.1. A directMølmer–Sørensen gate
In this section, we discuss—using the dressed-state picture—the direct implementation of aMølmer–Sørensen
gatewith dynamicMAGIC as proposed in [11] and realized in [13] and described by theHamiltonian given in
equation (12). In this case, two detuned dynamic gradient fields are applied that induce theMølmer–
Sørensen gate.

TheHamiltonian from equation (12) is given in the rotating frame of the ion by

H a a a ae e A.1n n n j n
j t j t

n n,
i iB B0 0� �n s s= + W + +w w w w

+
- -

-
-( )( ) ( )† ( ) ( ) ( ) ( ) †

under the assumption 0jW = .We define the dressed-states by 0 1 2+ñ = ñ + ñ∣ (∣ ∣ ) and
0 1 2-ñ = ñ - ñ∣ (∣ ∣ ) , which transforms the operators so into

1

2
,

1

2
. A.2Z Zs s= S + S - S = S - S + S+ + - - + -( ) ( ) ( )

As a consequence, theHamiltonian in the dressed-state picture is given by

H a a t

t a a

cos

i sin . A.3

n n n j n z
j

B

j j
B n n

, 0

0

� �n w w

w w

= + W S -

+ S - S - +- +

{ [( ) ]
( ) [( ) ]}( ) ( )

† ( )

( ) ( ) †

The application of twofields with frequencies B n0w w n d- = o -o ( )with arbitrary but fixedmotionalmode n
leads to a cancellation of the termproportional to tsin B 0w w-[( ) ]. The interaction between themotional and
internal degrees of freedom is thus given by the effective Lamb-Dicke parameter j n n,e n= W and the oscillation
described by tcos B 0w w-[( ) ] . Decoupling ofmotional and internal degrees of freedom analog to equation (7) is
not possible due to the time dependence of the interaction.However, a transformation into the interaction
picture of themotionalmodes leads to aMølmer–Sørensen typeHamiltonian given for two ions by

H a ae e . A.4n z n z n
t

n
t

1,
1

2,
2 i i�= W S + W S +d d-( )( ) ( )( ) ( ) †

The time evolution under thisHamiltonianwith durationT 2p d= , therefore, yields a controlled-phase gate
[22]

U
J

exp i
2

2
. A.5zz z z

1,2 1 2p
d

= S S
⎡
⎣⎢

⎤
⎦⎥

˜
( )( ) ( )

The interaction strength can be determined analog to [45]with the identification j n j n n, ,h e nW = W = , whereΩ is
the driving strength and η the Lamb-Dicke parameter. Hence, using equation (23), we find

J 2 2 . A.6n n
n n n

n
1,2

1, 2,
1, 2,

d
e e n

n
d

=
W W

=˜ ( )

The use of twoRF-sources leads to a factor of two and the active driving of amotional side band leads to a factor
of nn d . This increases the coupling strength compared to equation (11) since δ can be chosen such that nd n� .
However, this conditional phase gate is only independent of the vibrational state, if the timeT is chosen correctly,
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whereas the spin–spin interaction described by equation (11) is independent of the vibrational states for all
times.

A.2. An indirectMølmer–Sørensen gate
In this section, we discuss a new idea to create aMølmer–Sørensen gate where the gate itself is performedwith
twofields without gradient and the coupling between the internal andmotional degrees of freedom is created by
a resonant dynamic gradient field. This approach is based onmethods used in [14, 38, 39]. In these cases, a static
gradientfieldwas used to create the coupling between internal andmotional degrees of freedom.

To create the coupling, we assume a resonant gradient fieldwith B 0w w= (as in equation (12)) leading to the
Hamiltonian

H a a a a
2

A.7c n n n j x
j

j n x
j

n n,� � �n s s= + W + W +( ) ( )† ( ) ( ) †

in the rotating frame of the ion.Wewill discuss two different ways for the additional blue and red detuned pulses
to create the gate.

A.2.1. Detuned driving fields in z-direction. In ourfirst approach, the additional detuned gatefields are applied
along the z-direction and are described by

H tcos A.8z z z z
j� w s= W ( ) ( )( )

with frequencies z j nw n d= W o -( ) andRabi frequency Bz z z �mW = . The transformation into the rotating
frame of the ion does not change thisHamiltonian. The transformation into the dressed state picture transforms
Hc (equation (A.7)) into

H a a a a
2

, A.9c n n n j Z
j

j n z
j

n n,DS ,� � �n= + W S + W S +( ) ( )† ( ) ( ) †

which has exactly the formof equation (3). The transformation ofHz leads to

H tcos . A.10z z z x
j

,DS � w= - W S( ) ( )( )

The state dependent shifting of the eigenmodes described by the transformation given in equation (7) transforms
Hc,DS into equation (9) and Hz,DS into

H tcos e e . A.11z z z
j a a j a a

,SE j n n n j n n n, ,� w= - W S + Se e
+

-
-

- -( )[ ] ( )( ) ( ) ( ) ( )† †

Weassume to be in the effective Lamb-Dicke regime and therefore a a a aexp 1j n n n j n n n, ,e e- » + -[ ( )] ( )† † . A
transformation into the interaction picture of the dressed-state qubit and themotionalmodesfinally leads in the
RWA to

H a ae e , A.12z j n z
j j

n
t

n
t

,MS ,
i i�e= - W S - S +d d

+ -
-( )( ) ( )( ) ( ) †

wherewe have already taken both driving fields with z j nw n d= W o -( ) into account. This interaction can
create aMølmer–Sørensen gatewith the transition strengths

. A.13z n n
MS

2
1, 2,e e
d

W =
W ( )

TheMølmer–Sørensen gate is not influenced by the spin–spin interaction described byHJ, equation (10), which
is also present, because ,z zS Ä S S Ä S o S Ä S+ + - -[ ]= 0. Furthermore, theMølmer–Sørensen gate is in
generalmuch faster and the termHJ could therefore be neglected for short time scales.

A.2.2. Detuned driving fields in x-direction. A secondmethod analog to [38] is to use a driving field in x-
direction given by

H tcos A.14x x x x
j� w s= W ( ) ( )( )

with x j n0w w n d= + W o -( ). The transformation into the rotating frame of the ion leads to

H e e , A.15x x
j t j t

,RF
i ix x0 0� s s= W +w w w w

+
-

-
- -[ ] ( )( ) ( ) ( ) ( )

where fast oscillating termswith frequency x0w w+ have been neglected. The transformation into the dressed-
state picture leads to

H t tcos i sin . A.16x DS x z
j

x
j j

x, 0 0� w w w w= W S - + S - S -+ -{ [( ) ] [ ] [( ) ]} ( )( ) ( ) ( )
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The shifting of the eigenmodes described by equation (7) leads to

H t

t

cos i e

e sin . A.17

x SE x z
j

x
j a a

j a a
x

, 0

0

j n n n

j n n n

,

,

� w w

w w

= W S - + S

- S -

e

e

+
-

-
- -

{ [( ) ] [
] [( ) ]} ( )

( ) ( ) ( )

( ) ( )

†

†

The zS term vanishes in the interaction picture (dressed-state qubit and shifted eigenmodes) due to the RWA
andwefinally arrive in the Lamb-Dicke regime at

H a ae e , A.18x j n x
j j

n
t

n
t

,MS ,
i i�e= W S - S +d d

+ -
-( )( ) ( )( ) ( ) †

wherewe have already taken both driving fields with x j n0w w n d= + W o -( ) into account. ThisHamiltonian
is up to aminus sign exactly the same as equation (A.12) and implements therefore also aMølmer–
Sørensen gate.

Appendix B. Examples

In this appendixwe present exemplary values for the coupling constants ε, equation (4), between trapped ions
and theCOMmode, which is equal for all ions, as well as the spin–spin coupling Jjk , equation (7), and the energy
splitting of the dressed qubits z�w ( ), equation (15), for different types of ions, differentmagnitudes of the
dynamic gradient field configurations, and different secular trap frequencies. Furthermore, we show concrete
exemplary results for a spatially constant dynamic gradient field and results for a gradient field that is created by a
single conductor and thus varies spatially.

Wefirst calculate numerically the equilibriumpositions of all ions in a linear trapwith harmonic axial
confinement. These depend on the ions’mass and on the secular trapping frequency 1n (COMmode). Then, we
determine the frequencies nn of the normal vibrationalmodes and the expansion coefficients bj n, for n 1> ,
equation (2).

As illustrative examples, we show results for a trapping frequency 2 120 kHzn p= ´ using Yb171 + ions and
for 2 300 kHzn p= ´ using Be9 + ions. The qubit in Yb171 + is represented by S F, 01 2 = ñ∣ and
S F m, 1, 1f1 2 = = o ñ∣ . This transition is tofirst order field sensitive, which is important when using static
MAGIC. For Be9 +we assume that the qubit is realized by the states S F m, 2, 1f1 2 = = ñ∣ and
S F m, 1, 1f1 2 = = ñ∣ as used e.g. in [29]. A constantmagnetic field can be applied tomake this transitionfirst-
orderfield insensitive. First-order field insensitive states can be only used for dynamicMAGIC. Themagnetic
moment z xm is given by the Bohrmagneton Bm for both qubits.

The coupling constants ε and Jjk and the difference in dressed-qubit resonance frequencies (relevant for
individual addressing) for two ions exposed to the same dynamic gradient are given in table B1. The complete
couplingmatrix Jjk{ } forN=16 ions is displayed in table B2.

As an example for how a dynamic gradient can be generated, we consider the probably simplest possible
arrangement: a single wire oriented perpendicular to a linear string of ions. In that case the gradient B¢ acting on
a particular ion depends on that ion’s position. Inwhat follows, B¢ specifies the gradient at the location of the
first ion placed h=30μmabove and z 10 mmD = (approximately equal to the distance between two ions) aside
of the conductor, whereas all other ions are exposed to a smaller gradient falling off as B r1 2¢ = with r being the
ion’s distance from the conductor. The gradient parallel to the axialmotion, given by B B z rz¶ = ¢ · ,
contributes to the coupling between internal andmotional states. The spin–spin couplingmatrix Jjk{ } resulting
from this configuration for 9Be+ and B 200¢ = Tm−1 is given in table B3.

In this case, the spin–spin coupling strength is reduced by about one order ofmagnitude between the first
and the last two ions due to the decrease of the gradient. For a constant gradient, the spin–spin coupling between
different pairs of ions also changes due to the spacing of the ions varying along the ion string.However, the order
ofmagnitude of the coupling stays the same (see table B2). For the case of a gradient generated by a single
conductor, the addressing frequencies and coupling strengths ε to theCOMmode are given in table B4. For a
constant gradient, ε is equal for all ionswhereas ε differs from ion to ionwhen the gradient varies spatially. Due
to the specific geometry described in the above example, the spin-motion coupling first increases due to better

Table B1.Coupling constants ε between ions and theCOMmode, spin–spin coupling
J J 2j k j k, , p=˜ ( ) and frequency difference 2w w pD = D˜ ( )with z z1 2w w wD = - for
N=2 ions exposed to a constant gradient of B 35¢ = T m−1 or B 200¢ = T m−1.

B 35¢ = T m−1 B 200¢ = T m−1

Ion ε J1,2˜ /Hz wD ˜ /MHz ε J1,2˜ /kHz wD ˜ /MHz

171Yb+ 0.05 164 2.76 0.26 5.36 15.8
9Be+ 0.05 498 4.00 0.27 16.3 22.8
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alignment of the directions of the gradient and themotional excitation, before it decreases due to the decreasing
gradient.

The above configuration using a single straight wire for generating a dynamic gradient serves as an
illustrative example. A future experimental realization of the dynamic gradient scheme using dressed states is
likely to use a different configuration of gradient-generating elements.
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