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Outline

• Rare-earth-ion doped crystals as quantum 
computer hardware

• Experimental results
• Current status and outlook



Requirements for quantum 
computing

• Coherent two-level systems acting as qubits
• Possibility to manipulate the qubits individually 

(single qubit operations)
• Coupling between any two qubits (two-bit gates)
• Possibility for reliable read-out of the individual 

qubits
• Scalability



• Long coherence times of 
the optical transitions      
(100 μs to 6 ms)

•At 4 Kelvin the ground 
state hyperfine levels have 
ms-s coherence times  and 
very long lifetimes (~ 
hours)

• The duration of a laser 
π-pulse, ~ 1 μs

The rare-earth-ions hyperfine states 
are used as qubit states
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•Narrow homogeneous line-widths (1-10 kHz)

•Large inhomogeneous line-widths (1-200 GHz)

4f-4f absorption line from
dopant ions in a rare earth 

doped inorganic crystal
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Addressing two different qubits in 
a rare-earth quantum computer
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Requirements for quantum 
computing

• Coherent two-level systems acting as qubits
• Possibility to manipulate the qubits 

individually (single qubit operations)
• Coupling between any two qubits            

(two-bit gates)
• Possibility for reliable read-out of the 

individual qubits
• Scalability



1. Two ions absorbing at different 
frequencies are located close to 
each other in the crystal lattice. 
In a non-centrosymmetric site 
the ions will have a permanent 
electric dipole moment and 
ground and excited state dipole 
moments can be different

Dipole-dipole interaction

2. One of the ions is excited on its 
optical transition

3. This change in dipole moment is 
sensed by the other ion causing its  
absorption frequency to change.
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Dipole-dipole interaction strength 
in rare-earth crystals

• Approximate numbers

• Ion distance          frequency shift
• 100 nm 1 line width
• 10 nm 1000 line widths
• 1 nm 1000000 line widths
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Requirements for quantum 
computing

• Coherent two-level systems acting as qubits
• Possibility to manipulate the qubits 

individually (single qubit operations)
• Coupling between any two qubits            

(two-bit gates)
• Possibility for reliable read-out of the 

individual qubits
• Scalability



All ions in a randomly selected small 
volume will interact strongly

All ions interact strongly, but detecting single ions is difficult

Small volume

ions
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intensity

Γ inhom

Γhom

•Narrow homogeneous line-widths (1-10 kHz)

•Large inhomogeneous line-widths (1-200 GHz)

Absorption line from
dopant ions in a rare earth 

doped inorganic crystal
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Challenges with multiple instance
approaches

• All ions in a qubit (i.e. all QC instances) must 
have identical wave functions

• Both optical and hyperfine transitions are 
inhomogeneously broadened, ions in different 
instances may experience different laser field 
strengths and couple differently to the field

• Ion-ion interaction may differ between instances
• It may be possible to construct pulses which 

compensate for this but this adds to the operation 
time and increase decoherence
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Qubit distillation

ion absorbing at frequency ν1

Arbitrary volume 
in the crystal

ion absorbing at frequency ν2



Inhomogeneous absorption profile is 
tailored to create qubit structures
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Qubit distillation

ion absorbing at frequency ν1

Arbitrary volume 
in the crystal

ion absorbing at frequency ν2

Ions interacting
strongly enough 
for mutual control.
Potential QC
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Requirements on excitation pulses



How to interact with the qubit ions 
without interacting with  ions at 
nearby absorption frequencies
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Excitation with Gaussian π-pulses 
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Pulse shapes for coherent transfer of 
population

This work was carried out by Ingela Roos
together with Klaus Mølmer
• “Robust quantum computing with composite

pulse and coherent population trapping”,
Phys Rev A69, 22321 (2004) 

Requirements 
• Complete transfer of the peak of ions
• No excitation of surrounding ions 



Complex hyperbolic secant pulse 
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Excitation with complex hyperbolic 
secant pulse 
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Further more, above a certain threshold intensity the operation is 
insensitive to different ions having different Rabi frequencies 



We must have same wave function 
for all QC instances

• Hyperbolic secant pulses can compensate 
for 
– Finite channel widths

• Variation in detunings
– Field inhomogeneities & ion orientation 

variations
• Variations in laser coupling



Excitation with complex hyperbolic 
secant pulse 
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The right hand figure illustrates that the ions are driven 
coherently on the Bloch sphere



High fidelity qubit operations 
require coherent laser systems

• Rare earth ion coherence times
– Pr:YSO, optical ~100 μs, qubit ~100 ms
– Eu:YSO, optical ~1 ms, qubit ?
– Er:YSO, optical (1.5 μm) several ms

• Dye lasers
– Commercial, coherence time <1 μs
– Dortmund system coherence time ~10 μs
– Lund system coherence time ~100 μs

• Drift <1 kHz/s
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Phase stabilization against a cavity
Pound - Drever - Hall

REFERENCE
CAVITY

LASER

~
ωm= 50MHz

ωc Freq

E

λ/4

ωc

E

ωc-ωm ωc+ωm

ωc

E

ωc-ωm ωc+ωm

Frequency  f

LP

PS

ERROR



Locking to spectral hole

• Cavity with fixed transmission linewidth is 
replaced against a spectral hole with a 
linewidth that dynamically adapts to the
laser linewidth

• Different optimum modulation index
• Optimum absorption
• New locking regimes 

– system locks leading to constant drift



Free induction decay Pr:YSO
Beat signal between laser and Pr ions
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Free induction decay
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Laser phase drift <5° over 10 μs 
Coherence time > 100 μs
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Qubit creation



Inhomogeneous absorption profile is 
tailored to create qubit structures
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1. Creating a wide pit
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2. Isolating one type of ions
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Experimental data



Pit & peak creation
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Readout procedure
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Experimental set-up

CW dye laser
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State to state transfer
Single state-to state transfer efficiency 97.5%
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Qubit distillation experiment
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Arbitrary single qubit operations

• Secant hyperbolic pulses compensate for the
inhomogeneous broadening in the qubit for 
transitions going from one pole to the other
pole on the Bloch sphere

• Thus they are not readily applicable to
arbitrary single qubit operations  



Excitation with complex hyperbolic 
secant pulse 
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Further more, above a certain threshold intensity the operation is 
insensitive to different ions having different Rabi frequencies 



Pulse sequences for arbitrary single 
qubit operations

This work was carried out by Ingela Roos
together with Klaus Mølmer
• “Robust quantum computing with composite

pulse and coherent population trapping”,
Phys Rev A69, 22321 (2004) 

Requirements 
• Find pulses compensating for instances 

having different transition frequencies and 
different ion-field coupling strength



Three-level system
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Single qubit operations
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Rabi frequency selection
Ions in different parts of the beam experience

different Rabi frequencies
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Rabi frequency distillation
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Requirements for quantum 
computing

• Coherent two-level systems acting as qubits
• Possibility to manipulate the qubits 

individually (single qubit operations)
• Coupling between any two qubits (two-bit 

gates)
• Possibility for reliable read-out of the 

individual qubits
• Scalability



Qubit distillation

ion absorbing at frequency ν1

Arbitrary volume 
in the crystal

ion absorbing at frequency ν2

Ions interacting
strongly enough 
for mutual control.
Potential QC



Dipole-dipole interaction
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δν – frequency shift due to the dipole-dipole interaction

Δμ - difference in dipole moment between ground and excited state
r – distance between interacting ions

Fraction of controllable ions in a qubit (η) scale as  η∝Ν(Δμ)2

N = dopant concentration

Higher dopant concentration, or larger difference in dipole
moments between ground and excited state would lead to
increased probability to find ions that interact



Scaling

ion absorbing at frequency ν1

Arbitrary volume 
in the crystal

ion absorbing at frequency ν2

Ions interacting
strongly enough 
for mutual control.
Potential QC



Readout: Single instance with search 
approach

Minimal laser focus

⇒ only read out one 
with specialised 
readout ion

Read out ion of
different species



Single instance with search approach

q1-qn: Qubit ions
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Summary
Selected results

• Qubits are initiated in well defined 
states

• Qubit state-to-state transfer efficiency is 
97.5%, simulations predict 98.5% 

• Qubit distillation >90%
• Scalable schemes have been developed



Outlook

• Our dye laser system has been frequency
stabilised to a few kHz linewidth to carry
out high fidelity:
– Single qubit operations
– Two-qubit gate operations

• Potential read out ion candidates are
investigated
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