

GRAPE, Robust Control and Quantum Gate Design Metric

Steffen Glaser, TU München

Control Parameters $\quad u_{k}(t)$

$\mathrm{H}_{\mathbf{0}}+\sum_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}(\mathrm{t}) \mathrm{H}_{\mathrm{k}}$

GRAPE (Gradient Ascent Pulse Engineering)

$$
u_{k}(t) \longrightarrow u_{k}(t)+\varepsilon\left\langle\lambda(t) \mid\left[-i H_{k}, \rho(t)\right]\right\rangle
$$

Robust control using GRAPE algorithm: single qubit examples

References:

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S. J. Glaser, "Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms", J. Magn. Reson. 172, 296-305 (2005).
T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, S. J. Glaser, "Application of Optimal Control Theory to the Design of Broadband Excitation Pulses for High Resolution NMR", J. Magn. Reson. 163, 8-15 (2003).
T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, S. J. Glaser, "Reducing the Duration of Broadband Excitation Pulses Using Optimal Control with Limited RF Amplitude", J. Magn. Reson. 167, 68-74 (2004).
K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, B. Luy, "Exploring the Limits of Broadband Excitation and Inversion Pulses", J. Magn. Reson. 170, 236-243 (2004).
T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, S. J. Glaser, "Tailoring the Optimal Control Cost Function to a Desired Output: Application to Minimizing Phase Errors in Short Broadband Excitation Pulses", J. Magn. Reson., 172, 17-23 (2005).
T. E. Skinner, K. Kobzar, B. Luy, R. Bendall, W. Bermel, N. Khaneja, S. J. Glaser, "Optimal Control Design of Constant Amplitude Phase-Modulated Pulses: Application to CalibrationFree Broadband Excitation", J. Magn. Reson. 179, 241-249 (2006).
B. Luy, K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, "Construction of Universal Rotations from Point to Point Transformations", J. Magn. Reson. 176, 179-186 (2005).

Robust control of a single spin

Control fields

PHASE

Skinner, Reiss, Khaneja, Luy, Glaser (2003)

Robust control of a single qubit

Control fields

Skinner, Reiss, Khaneja, Luy, Glaser (2003)

Previous excitation pulses with the same performance are significantly longer than optimized pulses (BEBOP)

(excitation efficiency: 98\%, max. rf amplitude: 10 kHz , no rf inhomogeneity)

robust, broadband excitation pulse

Pattern Pulses

If amplitude (x)

rf amplitude (y)

$$
U_{x}(\alpha)=V \cdot \bar{V}^{t r}
$$

From excitation to refocussing pulse

amplitude and phase of pulse sequence

components of rotation vector

orientation of rotation vector

Construction of a band-selective 180_{z}° rotation

Time-Optimal Simulation of Trilinear Coupling Terms

given:

$$
H=2 \pi J\left(l_{1 z} I_{2 z}+l_{2 z} I_{3 z}\right)
$$

desired:

$$
\begin{aligned}
& H_{\text {eff }}=2 \pi J_{\text {eff }}\left(I_{1 z} I_{2 z} I_{3 z}\right) \\
& U=\exp \left\{-i \kappa 2 \pi I_{1 z} I_{2 z} I_{3 z}\right\}
\end{aligned}
$$

Tseng, Somaroo, Sharf, Knill, Laflamme, Havel, Cory, Phys. Rev. A 61, 012302 (2000)

Geodesics on a sphere

Euklidian metric

$$
(d x)^{2}+(d y)^{2}+(d z)^{2}
$$

"quantum gate design metric"

$$
\frac{(\mathrm{dx})^{2}+(\mathrm{dz})^{2}}{\mathrm{y}^{2}}
$$

Khaneja et al., Phys. Rev. A 75, 012322 (2007).

Generating CNOT(1,3)

$$
\mathcal{H}_{c}=2 \pi J\left(I_{1 z} I_{2 z}+I_{2 z} I_{3 z}\right)
$$

$$
\mathcal{U}_{13}=\exp \left\{-i \frac{\pi}{2} 2 I_{1 z} I_{3 z}\right\}
$$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
& x_{1}=\left\langle I_{1 x}\right\rangle \quad \mathcal{H}_{c}=2 \pi J\left(I_{1 z} I_{2 z}+I_{2 z} I_{3 z}\right) \\
& x_{2}=\left\langle 2 I_{1 y} I_{2 z}\right\rangle \\
& x_{3}=\left\langle 2 I_{1 y} I_{2 x}\right\rangle \quad \mathcal{H}_{A}=u_{A}(t) \pi J I_{2 y} \\
& x_{4}=\left\langle 4 I_{1 y} I_{2 y} I_{3 z}\right\rangle \quad \mathcal{H}_{B}=u_{B}(t) \pi J I_{2 x} \\
& x_{5}=\left\langle 4 I_{1 y} I_{2 z} I_{3 z}\right\rangle \\
& x_{6}=-\left\langle 2 I_{1 x} I_{3 z}\right\rangle \\
& x_{A}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{t} \\
& x_{B}=\left(x_{3}, x_{4}, x_{5}, x_{6}\right)^{t} \\
& \frac{d x_{A, B}}{d t}=\pi J\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & -u_{A, B} & 0 \\
0 & u_{A, B} & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) x_{A, B}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x_{A, B}}{d t}=\pi J\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & -u_{A, B} & 0 \\
0 & u_{A, B} & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) x_{A, B} \\
& (1,0,0,0) \quad\left(0, x_{2}^{\prime}, x_{3}^{\prime}, \frac{1}{2}\right) \\
& x(t)=x_{1}(t), y(t)=\sqrt{x_{2}^{2}(t)+x_{3}^{2}(t)} \text { and } z(t)=x_{4}(t) \\
& \left.\frac{1}{12}, \frac{1}{2}\right) \\
& \frac{d}{d t}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\pi J \theta(t)=\frac{x_{2}(t)}{x_{3}(t)} \\
& \left.\begin{array}{ccc}
0 & -\sin \theta(t) & 0 \\
\sin \theta(t) & 0 & -\cos \theta(t) \\
0 & \cos \theta(t) & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

$\frac{d x_{A, B}}{d t}=\pi J\left(\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & -u_{A, B} & 0 \\ 0 & u_{A, B} & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right) x_{A, B}$
transfer time: $\quad \frac{1}{\pi J} \int \underbrace{\sqrt{\frac{(\dot{x})^{2}+(\dot{z})^{2}}{y^{2}}}}_{L} d t \quad y^{2}=1-x^{2}-z^{2}$
Euler-Lagrange equations for the geodesic

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x} ; \quad \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{z}}\right)=\frac{\partial L}{\partial z}
$$

Geodesics on a sphere

Euklidian metric

$$
(\mathrm{dx})^{2}+(\mathrm{dy})^{2}+(\mathrm{dz})^{2}
$$

"quantum gate design metric"

$$
\frac{(\mathrm{dx})^{2}+(\mathrm{dz})^{2}}{\mathrm{y}^{2}}
$$

Khaneja et al., Phys. Rev. A 75, 012322 (2007).

Pulse sequence for creating $U_{13}=\exp \left\{-i \pi I_{12} I_{3 z}\right\}$

$\theta=180^{\circ}-\alpha=31.4^{\circ}$, weak pulse amplitude: 0.52 J

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

TABLE I. Duration τ_{C} of various implementations of the $\operatorname{CNOT}(1,3)$ gate.

Pulse sequence	$\tau_{C}\left(\right.$ units of $\left.J^{-1}\right)$	Relative duration (\%)
Sequence 1 (C1)	3.5	100
Sequence 2 (C2)	2.5	71.4
Sequence 3 (C3)	2.0	57.1
Sequence 4 (C4)	1.866	53.3
Sequence 5 (C5)	1.253	38.8

(C1, C2)
D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Gracz, and E. O. Stejskal, Phys. Rev. A 62, 022304 (2000).
(C3, C4, C5) Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Experimental Demonstration

Solvent: DMSO-d ${ }_{6}$
Temp.: 295 K
Bruker 500 Avance Spectrometer
$J_{12}=-87.3 \mathrm{~Hz} \approx J_{23}=-88.8 \mathrm{~Hz}$ » $J_{13}=2.9 \mathrm{~Hz}$

${ }^{15} \mathrm{~N}$ - acetamide

$$
\Delta v_{13}=310 \mathrm{~Hz}
$$

Experimental Demonstration U_{13}

$$
\mathcal{U}_{13}=\exp \left\{-i \frac{\pi}{2} 2 I_{1 z} I_{3 z}\right\}
$$

Simulation
$\rho_{A}=I_{1 x}$

$$
\rho_{B}=2 I_{1 y} I_{3 z}
$$

Experimental demonstration of $\operatorname{CNOT}(1,3)$

Toffoli gate

ideal sequence

$$
\rho_{A}=I_{1 x}
$$

$$
\rho_{D}=\frac{1}{\sqrt{2}}\left(I_{1 x}+2 I_{1 x} I_{2 z}+2 I_{1 x} I_{3 x}-4 I_{1 x} I_{2 z} I_{3 x}\right)
$$

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Simulation

Experiment

TABLE II. Duration τ_{T} of various implementations of the Toffoli gate.

Pulse sequence	τ_{T} (units of J^{-1})	Relative duration (\%)
Sequence 1 (T1)	9.0	100
Sequence 2 (T2)	4.5	50
Sequence 3 (T3)	4.75	52.8
Sequence 4 (T4)	3.16	35.1
Sequence 5 (T5)	2.57	28.6
Sequence 6 (T6)	2.16	24.0

(T1) D. P. DiVincenzo, Proc. R. Soc. London, Ser. A 1969, 261 (1998).
(T3) T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995).

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Acknowledgments

Harvard
N. Khaneja, D. Stefanatos, Jr-S. Li, H. Yuan, A. Johnson
R. Brockett
G. Wagner, D. Früh, T. Ito
A. Fahmy, J. Myers

University of Aarhus
N. C. Nielsen, A. C. Sivertsen, M. Bjerring

Wright State
T. Skinner

Bruker Biospin, Karlsruhe
W. Bermel, F. Engelke

Technische Universität München (TUM)
J. Neves, N. Pomplun, B. Heitmann,
R. Marx, T. Reiss, C. Kehlet, F. Kramer, T. Schulte-Herbrüggen, A. Spörl, R. Fisher
B. Luy, K. Kobzar
H. Kessler, J. Klages, A. Frank

Funding
EU (QAP, BIO-DNP), DFG, DAAD, ENB

