

GRAPE, Robust Control and Quantum Gate Design Metric

Steffen Glaser, TU München

Control Parameters u_k (t)

 $H_0 + \sum_k u_k(t) H_k$

GRAPE (Gradient Ascent Pulse Engineering)

Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser, J. Magn. Reson. 172, 296-305 (2005)

Robust control using GRAPE algorithm: single qubit examples

References:

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S. J. Glaser, "Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms", J. Magn. Reson. 172, 296-305 (2005).

T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, S. J. Glaser, "Application of Optimal Control Theory to the Design of Broadband Excitation Pulses for High Resolution NMR", J. Magn. Reson. 163, 8-15 (2003).

T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, S. J. Glaser, "Reducing the Duration of Broadband Excitation Pulses Using Optimal Control with Limited RF Amplitude", J. Magn. Reson. 167, 68-74 (2004).

K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, B. Luy, "Exploring the Limits of Broadband Excitation and Inversion Pulses", J. Magn. Reson. 170, 236-243 (2004).

T. E. Skinner, T. O. Reiss, B. Luy, N. Khaneja, S. J. Glaser, "Tailoring the Optimal Control Cost Function to a Desired Output: Application to Minimizing Phase Errors in Short Broadband Excitation Pulses", J. Magn. Reson., 172, 17-23 (2005).

T. E. Skinner, K. Kobzar, B. Luy, R. Bendall, W. Bermel, N. Khaneja, S. J. Glaser, "Optimal Control Design of Constant Amplitude Phase-Modulated Pulses: Application to Calibration-Free Broadband Excitation", J. Magn. Reson. 179, 241-249 (2006).

B. Luy, K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, "Construction of Universal Rotations from Point to Point Transformations", J. Magn. Reson. 176, 179-186 (2005).

Robust control of a single spin

Skinner, Reiss, Khaneja, Luy, Glaser (2003)

Robust control of a single qubit

Skinner, Reiss, Khaneja, Luy, Glaser (2003)

Previous excitation pulses with the same performance are significantly longer than optimized pulses (BEBOP)

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)

robust, broadband excitation pulse

Pattern Pulses

rf amplitude (x)

Kobzar et al., J. Magn. Reson. (2005)

From excitation to refocussing pulse

Construction of a band-selective180[°]_z rotation

Time-Optimal Simulation of Trilinear Coupling Terms

Tseng, Somaroo, Sharf, Knill, Laflamme, Havel, Cory, Phys. Rev. A 61, 012302 (2000) Khaneja, Glaser, Brockett, Phys. Rev. A 65, 032301 (2002)

Geodesics on a sphere

Euklidian metric $(dx)^{2} + (dy)^{2} + (dz)^{2}$

"
(dx)² + (dz)²
y²

Khaneja et al., Phys. Rev. A 75, 012322 (2007).

Generating CNOT(1,3)

 $\mathcal{H}_{c} = 2\pi J (I_{1z} I_{2z} + I_{2z} I_{3z})$

$$\mathcal{U}_{13} = \exp\{-i\frac{\pi}{2}2I_{1z}I_{3z}\}$$

$$x = (x_1, x_2, x_3, x_4, x_5, x_6) \qquad x_1$$

$$x_{1} = \langle I_{1x} \rangle$$

$$x_{2} = \langle 2I_{1y}I_{2z} \rangle$$

$$x_{3} = \langle 2I_{1y}I_{2x} \rangle$$

$$x_{4} = \langle 4I_{1y}I_{2y}I_{3z} \rangle$$

$$x_{5} = \langle 4I_{1y}I_{2z}I_{3z} \rangle$$

$$x_{6} = -\langle 2I_{1x}I_{3z} \rangle$$

$$\mathcal{H}_{c} = 2 \pi J (I_{1z} I_{2z} + I_{2z} I_{3z})$$

$$\mathcal{H}_A = u_A(t) \, \pi J I_{2y}$$

$$\mathcal{H}_B = u_B(t) \, \pi J I_{2x}$$

$$x_{A} = (x_{1}, x_{2}, x_{3}, x_{4})^{t}$$

$$x_{B} = (x_{3}, x_{4}, x_{5}, x_{6})^{t}$$

$$\frac{dx_{A,B}}{dt} = \pi J \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & -u_{A,B} & 0 \\ 0 & u_{A,B} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} x_{A,B}$$

$$\frac{dx_{A,B}}{dt} = \pi J \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & -u_{A,B} & 0 \\ 0 & u_{A,B} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} x_{A,B}$$

(1,0,0,0) $(0,x'_2,x'_3,\frac{1}{\sqrt{2}})$ $(0,0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$

$$x(t) = x_1(t), y(t) = \sqrt{x_2^2(t) + x_3^2(t)}$$
 and $z(t) = x_4(t)$ $\tan \theta(t) = \frac{x_2(t)}{x_3(t)}$

$$\frac{d}{dt} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \pi J \begin{bmatrix} 0 & -\sin \theta(t) & 0 \\ \sin \theta(t) & 0 & -\cos \theta(t) \\ 0 & \cos \theta(t) & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\frac{dx_{A,B}}{dt} = \pi J \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & -u_{A,B} & 0 \\ 0 & u_{A,B} & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} x_{A,B}$$

transfer time:

$$\frac{1}{\pi J} \int \sqrt{\frac{(\dot{x})^2 + (\dot{z})^2}{y^2}} dt$$

$$y^2 = 1 - x^2 - z^2$$

Euler-Lagrange equations for the geodesic

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) = \frac{\partial L}{\partial x}; \quad \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{z}}\right) = \frac{\partial L}{\partial z}$$

Geodesics on a sphere

Euklidian metric $(dx)^{2} + (dy)^{2} + (dz)^{2}$

"
(dx)² + (dz)²
y²

Khaneja et al., Phys. Rev. A 75, 012322 (2007).

 θ =180°- α =31.4°, weak pulse amplitude: 0.52 *J*

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

TABLE I. Duration τ_C of various implementations of the CNOT(1,3) gate.

Pulse sequence	τ_C (units of J^{-1})	Relative duration (%)
Sequence 1 (C1)	3.5	100
Sequence 2 (C2)	2.5	71.4
Sequence 3 (C3)	2.0	57.1
Sequence 4 (C4)	1.866	53.3
Sequence 5 (C5)	1.253	38.8

- (C1, C2) D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Gracz, and E. O. Stejskal, Phys. Rev. A **62**, 022304 (2000).
- (C3, C4, C5) Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Experimental Demonstration

Solvent: DMSO-d₆ Temp.: 295 K Bruker 500 Avance Spectrometer

 $J_{12} = -87.3 \text{ Hz} \approx J_{23} = -88.8 \text{ Hz} \gg J_{13} = 2.9 \text{ Hz}$ $\Delta v_{13} = 310 \text{ Hz}$

¹⁵N - acetamide

Experimental Demonstration U_{13}

$$\mathcal{U}_{13} = \exp\{-i\frac{\pi}{2}2I_{1z}I_{3z}\}$$

Experimental demonstration of CNOT(1,3)

Toffoli gate

ideal sequence

experimental sequence

$$\rho_D = \frac{1}{\sqrt{2}} (I_{1x} + 2I_{1x}I_{2z} + 2I_{1x}I_{3x} - 4I_{1x}I_{2z}I_{3x})$$

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

TABLE II. Duration τ_T of various implementations of the Toffoli gate.

Pulse sequence	τ_T (units of J^{-1})	Relative duration (%)
Sequence 1 (T1)	9.0	100
Sequence 2 (T2)	4.5	50
Sequence 3 (T3)	4.75	52.8
Sequence 4 (T4)	3.16	35.1
Sequence 5 (T5)	2.57	28.6
Sequence 6 (T6)	2.16	24.0

- (T1) D. P. DiVincenzo, Proc. R. Soc. London, Ser. A **1969**, 261 (1998).
- (T3) T. Sleator and H. Weinfurter, Phys. Rev. Lett. **74**, 4087 (1995).

Khaneja et al., Phys. Rev. A 75, 012322 (2007)

Acknowledgments

N. Khaneja, D. Stefanatos, Jr-S. Li, H. Yuan, A. Johnson R. Brockett G. Wagner, D. Früh, T. Ito A. Fahmy, J. Myers

University of Aarhus

N. C. Nielsen, A. C. Sivertsen, M. Bjerring

Wright State

Harvard

T. Skinner

Bruker Biospin, Karlsruhe W. Bermel, F. Engelke

Technische Universität München (TUM)

J. Neves, N. Pomplun, B. Heitmann,

R. Marx, T. Reiss, C. Kehlet, F. Kramer,

T. Schulte-Herbrüggen, A. Spörl, R. Fisher

B. Luy, K. Kobzar

H. Kessler, J. Klages, A. Frank

Funding

EU (QAP, BIO-DNP), DFG, DAAD, ENB